An advanced deep reinforcement learning algorithm for three-layer D2D-edge-cloud computing architecture for efficient task offloading in the Internet of things
dc.authorscopusid | Ali Ghaffari / 57197223215 | |
dc.authorwosid | Ali Ghaffari / AAV-3651-2020 | |
dc.contributor.author | Moghaddasi, Komeil | |
dc.contributor.author | Rajabi, Shakiba | |
dc.contributor.author | Gharehchopogh, Farhad Soleimanian | |
dc.contributor.author | Ghaffari, Ali | |
dc.date.accessioned | 2025-04-18T07:36:59Z | |
dc.date.available | 2025-04-18T07:36:59Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | The Internet of Things (IoTs) has transformed the digital landscape by interconnecting billions of devices worldwide, paving the way for smart cities, homes, and industries. With the exponential growth of IoT devices and the vast amount of data they generate, concerns have arisen regarding efficient task-offloading strategies. Traditional cloud and edge computing methods, paired with basic Machine Learning (ML) algorithms, face several challenges in this regard. In this paper, we propose a novel approach to task offloading in a Device-toDevice (D2D)-Edge-Cloud computing using the Rainbow Deep Q-Network (DQN), an advanced Deep Reinforcement Learning (DRL) algorithm. This algorithm utilizes advanced neural networks to optimize task offloading in the three-tier framework. It balances the trade-offs among D2D, Device-to-Edge (D2E), and Device/ Edge-to-Cloud (D2C/E2C) communications, benefiting both end users and servers. These networks leverage Deep Learning (DL) to discern patterns, evaluate potential offloading decisions, and adapt in real time to dynamic environments. We compared our proposed algorithm against other state -of -the -art methods. Through rigorous simulations, we achieved remarkable improvements across key metrics: an increase in energy efficiency by 29.8%, a 27.5% reduction in latency, and a 43.1% surge in utility. | |
dc.identifier.citation | Moghaddasi, K., Rajabi, S., Gharehchopogh, F. S., & Ghaffari, A. (2024). An advanced deep reinforcement learning algorithm for three-layer D2D-edge-cloud computing architecture for efficient task offloading in the Internet of Things. Sustainable Computing: Informatics and Systems, 43, 100992. | |
dc.identifier.doi | 10.1016/j.suscom.2024.100992 | |
dc.identifier.endpage | 18 | |
dc.identifier.issn | 2210-5379 | |
dc.identifier.issn | 2210-5387 | |
dc.identifier.scopus | 2-s2.0-85192685663 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.suscom.2024.100992 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/6463 | |
dc.identifier.volume | 43 | |
dc.identifier.wos | WOS:001241264700001 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Ghaffari, Ali | |
dc.institutionauthorid | Ali Ghaffari /0000-0001-5407-8629 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Sustainable computing-informatics & systems | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Internet of Things | |
dc.subject | Task Offloading | |
dc.subject | Device-to-Device Communications | |
dc.subject | Edge Computing | |
dc.subject | Cloud Computing | |
dc.title | An advanced deep reinforcement learning algorithm for three-layer D2D-edge-cloud computing architecture for efficient task offloading in the Internet of things | |
dc.type | Article |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: