An intrusion detection system on the internet of things using deep learning and multi-objective enhanced gorilla troops optimizer
dc.authorscopusid | Ali Ghaffari / 57197223215 | |
dc.authorwosid | Ali Ghaffari / AAV-3651-2020 | |
dc.contributor.author | Asgharzadeh, Hossein | |
dc.contributor.author | Ghaffari, Ali | |
dc.contributor.author | Masdari, Mohammad | |
dc.contributor.author | Gharehchopogh, Farhad Soleimanian | |
dc.date.accessioned | 2025-04-18T07:43:35Z | |
dc.date.available | 2025-04-18T07:43:35Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | In recent years, developed Intrusion Detection Systems (IDSs) perform a vital function in improving security and anomaly detection. The effectiveness of deep learning-based methods has been proven in extracting better features and more accurate classification than other methods. In this paper, a feature extraction with convolutional neural network on Internet of Things (IoT) called FECNNIoT is designed and implemented to better detect anomalies on the IoT. Also, a binary multi-objective enhance of the Gorilla troops optimizer called BMEGTO is developed for effective feature selection. Finally, the combination of FECNNIoT and BMEGTO and KNN algorithm-based classification technique has led to the presentation of a hybrid method called CNN-BMEGTO-KNN. In the next step, the proposed model is implemented on two benchmark data sets, NSL-KDD and TON-IoT and tested regarding the accuracy, precision, recall, and F1-score criteria. The proposed CNN-BMEGTO-KNN model has reached 99.99% and 99.86% accuracy on TON-IoT and NSL-KDD datasets, respectively. In addition, the proposed BMEGTO method can identify about 27% and 25% of the effective features of the NSL-KDD and TON-IoT datasets, respectively. | |
dc.description.sponsorship | Istinye University | |
dc.identifier.citation | Asgharzadeh, H., Ghaffari, A., Masdari, M., & Gharehchopogh, F. S. (2024). An Intrusion Detection System on The Internet of Things Using Deep Learning and Multi-objective Enhanced Gorilla Troops Optimizer. Journal of Bionic Engineering, 21(5), 2658-2684. | |
dc.identifier.doi | 10.1007/s42235-024-00575-7 | |
dc.identifier.endpage | 2684 | |
dc.identifier.issn | 1672-6529 | |
dc.identifier.issn | 2543-2141 | |
dc.identifier.issue | 5 | |
dc.identifier.scopus | 2-s2.0-85197801400 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 2658 | |
dc.identifier.uri | http://dx.doi.org/10.1007/s42235-024-00575-7 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/6483 | |
dc.identifier.volume | 21 | |
dc.identifier.wos | WOS:001264627100001 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Ghaffari, Ali | |
dc.institutionauthorid | Ali Ghaffari /0000-0001-5407-8629 | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.ispartof | Journal of bionic engineering | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Intrusion Detection | |
dc.subject | Internet of Things | |
dc.subject | Convolutional Neural Network | |
dc.subject | Multi-Objective | |
dc.subject | Gorilla Troops Optimizer | |
dc.title | An intrusion detection system on the internet of things using deep learning and multi-objective enhanced gorilla troops optimizer | |
dc.type | Article |