A Robust three-way classifier with shadowed granular balls based on justifiable granularity
dc.authorscopusid | Witold Pedrycz / 58861905800 | |
dc.authorwosid | Witold Pedrycz / HJZ-2779-2023 | |
dc.contributor.author | Yang, Jie | |
dc.contributor.author | Xiaodiao, Lingyun | |
dc.contributor.author | Wang, Guoyin | |
dc.contributor.author | Pedrycz, Witold | |
dc.contributor.author | Xia, Shuyin | |
dc.contributor.author | Zhang, Qinghua | |
dc.contributor.author | Wu, Di | |
dc.date.accessioned | 2025-06-18T13:21:49Z | |
dc.date.available | 2025-06-18T13:21:49Z | |
dc.date.issued | 2025 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | The granular-ball (GB)-based classifier introduced by Xia exhibits adaptability in creating coarse-grained information granules for input, thereby enhancing its generality and flexibility. Nevertheless, the current GB-based classifiers rigidly assign a specific class label to each data instance and lack the necessary strategies to address uncertain instances. These far-fetched certain classification approaches toward uncertain instances may suffer considerable risks. To solve this problem, we construct a robust three-way classifier with shadowed GBs (3WC-SGBs) for uncertain data. First, combined with information entropy, we propose an enhanced GB generation method with the principle of justifiable granularity. Subsequently, based on minimum uncertainty, a shadowed mapping is utilized to partition a GB into core region (COR), important region (IMP), and unessential region (UNE). Based on the constructed shadowed GBs, we establish a three-way classifier to categorize data instances into certain classes and uncertain case. Finally, extensive comparative experiments are conducted with two three-way classifiers, three state-of-the-art GB-based classifiers, and three classical machine learning classifiers on 12 public benchmark datasets. The results show that our model demonstrates robustness in managing uncertain data and effectively mitigates classification risks. Furthermore, our model almost outperforms the other comparison methods in both effectiveness and efficiency. | |
dc.identifier.citation | Yang, J., Xiaodiao, L., Wang, G., Pedrycz, W., Xia, S., Zhang, Q., & Wu, D. (2025). A Robust Three-Way Classifier With Shadowed Granular Balls Based on Justifiable Granularity. IEEE Transactions on Neural Networks and Learning Systems. | |
dc.identifier.doi | 10.1109/TNNLS.2025.3563889 | |
dc.identifier.endpage | 15 | |
dc.identifier.issn | 2162-237X | |
dc.identifier.issn | 2162-2388 | |
dc.identifier.pmid | 40388284 | |
dc.identifier.scopus | 2-s2.0-105005773403 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | http://dx.doi.org/10.1109/TNNLS.2025.3563889 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/7316 | |
dc.identifier.wos | WOS:001494226800001 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | PubMed | |
dc.institutionauthor | Pedrycz, Witold | |
dc.institutionauthorid | Witold Pedrycz / 0000-0002-9335-9930 | |
dc.language.iso | en | |
dc.publisher | Institute of electrical and electronics engineers inc. | |
dc.relation.ispartof | IEEE transactions on neural networks and learning systems | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Granular-Ball (GB) Generation | |
dc.subject | Justifiable Granularity | |
dc.subject | Shadowed GBs | |
dc.subject | Three-Way Classifier | |
dc.title | A Robust three-way classifier with shadowed granular balls based on justifiable granularity | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- A_Robust_Three-Way_Classifier_With_Shadowed_Granular_Balls_Based_on_Justifiable_Granularity.pdf
- Boyut:
- 5.61 MB
- Biçim:
- Adobe Portable Document Format
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: