Evaluating the performance of metaheuristic-tuned weight agnostic neural networks for crop yield prediction
dc.authorscopusid | Erfan Babaee Tirkolaee / 57196032874 | |
dc.authorwosid | Erfan Babaee Tirkolaee / U-3676-2017 | |
dc.contributor.author | Jovanovic, Luka | |
dc.contributor.author | Zivkovic, Miodrag | |
dc.contributor.author | Bacanin, Nebojsa | |
dc.contributor.author | Dobrojevic, Milos | |
dc.contributor.author | Simic, Vladimir | |
dc.contributor.author | Sadasivuni, Kishor Kumar | |
dc.contributor.author | Tirkolaee, Erfan Babaee | |
dc.date.accessioned | 2025-04-18T09:48:33Z | |
dc.date.available | 2025-04-18T09:48:33Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | |
dc.description.abstract | This study explores crop yield forecasting through weight agnostic neural networks (WANN) optimized by a modified metaheuristic. WANNs offer the potential for lighter networks with shared weights, utilizing a two-layer cooperative framework to optimize network architecture and shared weights. The proposed metaheuristic is tested on real-world crop datasets and benchmarked against state-of-the-art algorithms using standard regression metrics. While not claiming WANN as the definitive solution, the model demonstrates significant potential in crop forecasting with lightweight architectures. The optimized WANN models achieve a mean absolute error (MAE) of 0.017698 and an R-squared (R2) score of 0.886555, indicating promising forecasting performance. Statistical analysis and Simulator for Autonomy and Generality Evaluation (SAGE) validate the improvement significance and feature importance of the proposed approach. © The Author(s) 2024. | |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, Institute of Physics Belgrade, Science Fund of the Republic of Serbia, Science Fund of the Republic of Serbia | |
dc.identifier.citation | Jovanovic, L., Zivkovic, M., Bacanin, N., Dobrojevic, M., Simic, V., Sadasivuni, K. K., & Tirkolaee, E. B. (2024). Evaluating the performance of metaheuristic-tuned weight agnostic neural networks for crop yield prediction. Neural Computing and Applications, 1-30 | |
dc.identifier.doi | 10.1007/s00521-024-09850-4 | |
dc.identifier.endpage | 14756 | |
dc.identifier.issn | 09410643 | |
dc.identifier.issue | 24 | |
dc.identifier.scopus | 2-s2.0-85192782986 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 14727 | |
dc.identifier.uri | http://dx.doi.org/10.1007/s00521-024-09850-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/6868 | |
dc.identifier.volume | 36 | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | Web of Science | |
dc.institutionauthor | Tirkolaee, Erfan Babaee | |
dc.institutionauthorid | Erfan Babaee Tirkolaee / 0000-0003-1664-9210 | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.relation.ispartof | Neural Computing and Applications | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Crop Yield Prediction | |
dc.subject | Metaheuristics | |
dc.subject | Reptile Search Algorithm | |
dc.subject | Weight Agnostic Neural Networks | |
dc.title | Evaluating the performance of metaheuristic-tuned weight agnostic neural networks for crop yield prediction | |
dc.type | Article |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: