Feature-weight and cluster-weight learning in fuzzy c-means method for semi-supervised clustering
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Semi -supervised clustering aims to guide the clustering by utilizing auxiliary information about the class labels. Among the semi -supervised clustering categories, the constraint -based approach uses the available pairwise constraints in some steps of the clustering procedure, usually by adding new terms to the objective function. Considering this category, Semi -supervised FCM (SSFCM) is a semi -supervised version of the fuzzy c -means algorithm, which takes advantage of fuzzy logic and auxiliary class distribution knowledge. Despite the performance enhancement caused by incorporating this extra knowledge in the clustering process, semi -supervised fuzzy approaches still suffer from some problems. All the data attributes in the feature space are assumed to have equal importance in the cluster formation, while some features may be more informative than others. Thus the feature importance issue is not addressed in the semi -supervised category. This paper proposes a novel SemiSupervised Fuzzy c -means approach, which is designed based on Feature -Weight, and Cluster -Weight learning, named SSFCM-FWCW. Inspired by the SSFCM, a fuzzy objective function is presented, which is composed of (1) a semi -supervised term representing the external class knowledge; (2) a feature weighting; and (3) a cluster weighting. Both feature weights and cluster weights are determined adaptively during the clustering. Considering these two techniques leads to insensitivity to the initial center selection, insensitivity to noise, and consequently helps to form an optimal clustering structure. Experimental comparisons are carried out on several benchmark datasets to evaluate the proposed approach 's performance, and promising results are achieved.
Açıklama
Anahtar Kelimeler
Semi-Supervised Clustering, Fuzzy c-Means, Feature Weighting
Kaynak
Applied soft computing
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
161
Sayı
Künye
Golzari Oskouei, A., Samadi, N., & Tanha, J. (2024). Feature-weight and cluster-weight learning in fuzzy c-means method for semi-supervised clustering▪.