Unifying optimization forces: Harnessing the fine-structure constant in an electromagnetic-gravity optimization framework
dc.authorscopusid | Korhan Cengiz / 56522820200 | |
dc.authorwosid | Korhan Cengiz / HTN-8060-2023 | |
dc.contributor.author | Akhtar, Md Amir Khusru | |
dc.contributor.author | Kumar, Mohit | |
dc.contributor.author | Verma, Sahil | |
dc.contributor.author | Cengiz, Korhan | |
dc.contributor.author | Verma, Pawan Kumar | |
dc.contributor.author | Khurma, Ruba Abu | |
dc.contributor.author | Alazab, Moutaz | |
dc.date.accessioned | 2025-04-16T14:05:17Z | |
dc.date.available | 2025-04-16T14:05:17Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | |
dc.description.abstract | The electromagnetic-gravity optimization (EMGO) framework is a novel optimization technique that integrates the fine-structure constant and leverages electromagnetism and gravity principles to achieve efficient and robust optimization solutions. Through comprehensive performance evaluation and comparative analyses against state-of-the-art optimization techniques, EMGO demonstrates superior convergence speed and solution quality. Its unique balance between exploration and exploitation, enabled by the interplay of electromagnetic and gravity forces, makes it a powerful tool for finding optimal or near-optimal solutions in complex problem landscapes. The research contributes by introducing EMGO as a promising optimization approach with diverse applications in engineering, decision support systems, machine learning, data mining, and financial optimization. EMGO's potential to revolutionize optimization methodologies, handle real-world problems effectively, and balance global exploration and local exploitation establishes its significance. Future research opportunities include exploring adaptive mechanisms, hybrid approaches, handling high-dimensional problems, and integrating machine learning techniques to enhance its capabilities further. EMGO gives a novel approach to optimization, and its efficacy, advantages, and potential for extensive adoption open new paths for advancing optimization in many scientific, engineering, and real-world domains. | |
dc.description.sponsorship | Qatar National Library | |
dc.identifier.citation | Akhtar, M. A. K., Kumar, M., Verma, S., Cengiz, K., Verma, P. K., Khurma, R. A., & Alazab, M. (2024). Unifying optimization forces: Harnessing the fine-structure constant in an electromagnetic-gravity optimization framework. Journal of Intelligent Systems, 33(1), 20230306. | |
dc.identifier.doi | 10.1515/jisys-2023-0306 | |
dc.identifier.endpage | 19 | |
dc.identifier.issn | 0334-1860 | |
dc.identifier.issn | 2191-026X | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-85213011149 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | http://dx.doi.org/10.1515/jisys-2023-0306 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/6042 | |
dc.identifier.volume | 33 | |
dc.identifier.wos | WOS:001379454500001 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Cengiz, Korhan | |
dc.institutionauthorid | Korhan Cengiz / 0000-0001-6594-8861 | |
dc.language.iso | en | |
dc.publisher | Walter de gruyter gmbh | |
dc.relation.ispartof | Journal of intelligent systems | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Convergence Speed | |
dc.subject | Electromagnetism | |
dc.subject | Fine-Structure Constant | |
dc.subject | Gravity | |
dc.subject | Optimization Technique | |
dc.title | Unifying optimization forces: Harnessing the fine-structure constant in an electromagnetic-gravity optimization framework | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Unifying-optimization-forces-Harnessing-the-finestructure-constant-in-an-electromagneticgravity-optimization-frameworkJournal-of-Intelligent-Systems.pdf
- Boyut:
- 2.87 MB
- Biçim:
- Adobe Portable Document Format
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: