Two-pronged feature reduction in spectral clustering with optimized landmark selection
dc.authorscopusid | Bahman Arasteh / 39861139000 | |
dc.authorscopusid | Asgarali Bouyer / 35177297800 | |
dc.authorwosid | Bahman Arasteh / AAN-9555-2021 | |
dc.authorwosid | Asgarali Bouyer / IYS-5116-2023 | |
dc.contributor.author | Rouhi, Alireza | |
dc.contributor.author | Bouyer, Asgarali | |
dc.contributor.author | Arasteh, Bahman | |
dc.contributor.author | Liu, Xiaoyang | |
dc.date.accessioned | 2025-04-18T08:54:37Z | |
dc.date.available | 2025-04-18T08:54:37Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | Spectral clustering is widely employed for clustering data points, particularly for non-linear and non-convex structures in high-dimensional spaces. However, it faces challenges due to the high computational cost of eigen decomposition operations and the performance limitations with high-dimensional data. In this paper, we introduce BVA_LSC, a novel spectral clustering algorithm designed to address these challenges. Firstly, we incorporate an advanced feature reduction stage utilizing Barnes-Hut t-SNE and a deep Variational Autoencoder (VAE) to efficiently reduce the dimensionality of the data, thereby accelerating eigen decomposition. Secondly, we propose an adaptive landmark selection strategy that combines the Grey Wolf Optimizer (GWO) with a novel objective function and K-harmonic means clustering. This strategy dynamically determines an optimal number of landmarks, enhancing the representativeness of the data and reducing the size of the similarity matrix. We assess the performance of our algorithm on various standard datasets, demonstrating its superiority over state-of-the-art methods in terms of accuracy and efficiency. | |
dc.identifier.citation | Rouhi, A., Bouyer, A., Arasteh, B., & Liu, X. (2024). Two-pronged feature reduction in spectral clustering with optimized landmark selection. Applied Soft Computing, 161, 111775. | |
dc.identifier.doi | 10.1016/j.asoc.2024.111775 | |
dc.identifier.endpage | 20 | |
dc.identifier.issn | 1568-4946 | |
dc.identifier.issn | 1872-9681 | |
dc.identifier.scopus | 2-s2.0-85194105877 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.asoc.2024.111775 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/6636 | |
dc.identifier.volume | 161 | |
dc.identifier.wos | WOS:001244584200001 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Bouyer, Asgarali | |
dc.institutionauthor | Arasteh, Bahman | |
dc.institutionauthorid | Bahman Arasteh / 0000-0001-5202-6315 | |
dc.institutionauthorid | Asgarali Bouyer / 0000-0002-4808-2856 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | APPLIED SOFT COMPUTING Applied soft computing | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Spectral Clustering | |
dc.subject | Variational Autoencoder | |
dc.subject | Landmark | |
dc.subject | Grey Wolf Optimization | |
dc.subject | K-Harmonic Means | |
dc.subject | Unsupervised Learning | |
dc.title | Two-pronged feature reduction in spectral clustering with optimized landmark selection | |
dc.type | Article |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: