Deep generative models for fast photon shower simulation in ATLAS
dc.authorscopusid | Andrew John Beddall / 57215802986 | |
dc.authorscopusid | Serkant Ali Çetin / 34567544400 | |
dc.authorscopusid | Sertaç Öztürk / 56421488400 | |
dc.authorscopusid | Sinem Şimşek / 57210344387 | |
dc.authorwosid | Andrew John Beddall / AAE-5820-2022 | |
dc.authorwosid | Sertaç Öztürk / AGO-2476-2022 | |
dc.authorwosid | Serkant Ali Çetin / AGF-0147-2022 | |
dc.authorwosid | Sinem Şimşek / AGG-2640-2022 | |
dc.contributor.author | Aad, G. | |
dc.contributor.author | Abbott, B. | |
dc.contributor.author | Beddall, Andrew John | |
dc.contributor.author | Çetin, Serkant Ali | |
dc.contributor.author | Öztürk, Sertaç | |
dc.contributor.author | Şimşek, Sinem | |
dc.date.accessioned | 2025-04-18T07:05:55Z | |
dc.date.available | 2025-04-18T07:05:55Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi, Rektörlük, Temel Bilimler Bölümü | |
dc.description.abstract | The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques. | |
dc.identifier.citation | ATLAS collaboration. (2022). Deep generative models for fast photon shower simulation in ATLAS. arXiv preprint arXiv:2210.06204. | |
dc.identifier.doi | 10.1007/s41781-023-00106-9 | |
dc.identifier.endpage | 40 | |
dc.identifier.issn | 25102044 | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-85189330049 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | http://dx.doi.org/10.1007/s41781-023-00106-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/6417 | |
dc.identifier.volume | 8 | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Beddall, Andrew John | |
dc.institutionauthor | Çetin, Serkant Ali | |
dc.institutionauthor | Öztürk, Sertaç | |
dc.institutionauthor | Şimşek, Sinem | |
dc.institutionauthorid | Andrew John Beddall / 0000-0002-8451-9672 | |
dc.institutionauthorid | Serkant Ali Çetin / 0000-0001-5050-8441 | |
dc.institutionauthorid | Sertaç Öztürk / 0000-0001-6533-6144 | |
dc.institutionauthorid | Sinem Şimşek / 0000-0002-9650-3846 | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.ispartof | Computing and software for big science | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Deep generative models for fast photon shower simulation in ATLAS | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Deep-Generative-Models-for-Fast-Photon-Shower-Simulation-in-ATLASComputing-and-Software-for-Big-Science.pdf
- Boyut:
- 9.52 MB
- Biçim:
- Adobe Portable Document Format
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: