Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Zheng, Hong-Liang" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Evaluating Holistic Privacy Risk Posed by Smart Home Ecosystem: A Capability-Oriented Model Accommodating Epistemic Uncertainty and Wisdom of Crowds
    (Ieee-Inst Electrical Electronics Engineers Inc, 2024) Chang, Jian-Peng; Zheng, Hong-Liang; Mardani, Abbas; Pedrycz, Witold; Chen, Zhen-Song
    Evaluating the holistic privacy risk (HPR) presented by a smart home ecosystem (SHE), encompassing both internal and external entities that may be targeted by different adversaries seeking to compromise users' privacy, can enhance the comprehensive understanding of the privacy risk landscape within the SHE. This matter is influenced by the complexity of risk surroundings, the diverse perspectives of users toward privacy, and the lack of historical data. Unfortunately, existing literature falls short in addressing these factors. To fill the gap, this article develops an innovative capability-oriented model that accommodates epistemic uncertainty and wisdom of crowds (WoC), designed to assist smart home device manufacturers in accurately assessing HPR posed by their SHEs. The model presents a method for representing subjective judgments that captures epistemic uncertainty and a technique for weighting individual judgments to mitigate overconfidence bias, thus effectively harnessing WoC. In addition, this model features two specialized methods: one for quantifying HPR and another for prioritizing associated single risks, both tailored to operate effectively within uncertain context. These innovative methods are versatile and can be applied to various risk assessment scenarios, especially where historical data are not available. The practicality and effectiveness of our model are demonstrated through a detailed case study.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim