Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Zhang, Yuanjian" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Fine-grained local label correlation for multi-label classification
    (Elsevier b.v., 2025) Zhao, Tianna; Zhang, Yuanjian; Miao, Duoqian; Pedrycz, Witold
    Comprehensive learning label correlation is conducive to boosting the accuracy of multi-label classification. While existing methods focus on exploring the correlation-aware original features or latent subspaces, they often overlook the role of correlation in deducing local structures. The oversight can result in suboptimal topic-based label correlation estimation and thus incur information loss. In contrast to the conventional single- granularity-based learning for local label correlation, we propose a multi-granularity correlation-based feature augmentation (MGOFA) model. MGOFA consists of three components that progressively refine the granularity of label correlation: granular-based feature augmentation for relative neighborhood-based class tendency estimation, granular-based latent topic mining for tendency-aware topic modeling, and fine-grained label correlation mining for augmented local label correlation learning. The information on neighborhood-based similarity between instances is explicitly leveraged and contributes to the model two-fold. Firstly, it induces the prototypes of latent topics, which share more knowledge with the label association. Secondly, it refines the discriminative granularity of the model by integrating it with the original features. Such a formulation simulates the viewpoint of human decision-making by automatically determining optimal solutions on both data and knowledge from coarse and refined granularity, respectively. Extensive comparisons completed often benchmarks demonstrate that MGOFA outperforms the state-of-the-art methods with satisfying convergence and sensitivity.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim