Yazar "Zarrabi, Ali" seçeneğine göre listele
Listeleniyor 1 - 20 / 138
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe 3D-Printing of Silk Nanofibrils Reinforced Alginate for Soft Tissue Engineering(Mdpi, 2023) Mohammadpour, Zahra; Kharaziha, Mahshid; Zarrabi, AliThe main challenge of extrusion 3D bioprinting is the development of bioinks with the desired rheological and mechanical performance and biocompatibility to create complex and patient-specific scaffolds in a repeatable and accurate manner. This study aims to introduce non-synthetic bioinks based on alginate (Alg) incorporated with various concentrations of silk nanofibrils (SNF, 1, 2, and 3 wt.%) and optimize their properties for soft tissue engineering. Alg-SNF inks demonstrated a high degree of shear-thinning with reversible stress softening behavior contributing to extrusion in pre-designed shapes. In addition, our results confirmed the good interaction between SNFs and alginate matrix resulted in significantly improved mechanical and biological characteristics and controlled degradation rate. Noticeably, the addition of 2 wt.% SNF improved the compressive strength (2.2 times), tensile strength (5 times), and elastic modulus (3 times) of alginate. In addition, reinforcing 3D-printed alginate with 2 wt.% SNF resulted in increased cell viability (1.5 times) and proliferation (5.6 times) after 5 days of culturing. In summary, our study highlights the favorable rheological and mechanical performances, degradation rate, swelling, and biocompatibility of Alg-2SNF ink containing 2 wt.% SNF for extrusion-based bioprinting.Öğe A novel microbial fuel cell design as biosensor to evaluate biochemical oxygen demand(Elsevier ltd, 2025) Naghibi, Negin; Khaleghi, Moj; Ataei, Seyed Ahmad; Zarrabi, AliMicrobial fuel cell (MFC) technology has gained significant attention for its dual capability to generate renewable energy and treat wastewater. Beyond these applications, MFCs have emerged as a promising tool for biosensing, particularly for detecting water pollutants. In this study, we aimed to optimize the evaluation of biochemical oxygen demand (BOD) by correlating it with the output voltage of an MFC. The effects of pH and external resistance on the MFC's performance were also assessed to enhance its operational stability. The experiment utilized a two-chambered MFC with a 2500 mL capacity, ceramic membrane, and carbon cloth electrodes. Synthetic wastewater and Shewanella xiamensis (code SH1 MF663195) were used as the anolyte, while distilled water served as the catholyte. Over 7 weeks, the MFC achieved a maximum current density of 1.939 mA/m2 and a power density of 80 mW/m2 at near-neutral pH and 3 k Omega external resistance. A positive linear correlation (R2 = 0.9984) was established between the output voltage and BOD concentration (16-436 mg/L). These findings suggest that this MFC-based biosensor is highly feasible and holds significant potential for real-time water quality monitoring.Öğe Advances in aptamer-based drug delivery vehicles for cancer therapy(Elsevier, 2022) Ghasemi, Kousar; Darroudi, Mahdieh; Rahimmanesh, Ilnaz; Ghomi, Matineh; Hassanpour, Mahnaz; Sharifi, Esmaeel; Yousefiasl, Satar; Ahmadi, Sepideh; Zarrabi, Ali; Borzacchiello, Assunta; Rabiee, Mohammad; Paiva-Santos, Ana Cláudia; Rabiee, NavidOverall, aptamers are special classes of nucleic acid-based macromolecules that are beginning to investigate because of their capability of avidity binding to a specific target for clinical use. Taking advantage of target-specific medicine led to more effective therapeutic and limitation of side effects of drugs. Herein, we discuss several aptamers and their binding capability and capacity for selecting tumor biomarkers and usage of them as targeting ligands for the functionalization of nanomaterials. We review recent applications based on aptamers and several nanoparticles to rise efficacy and develop carrier systems such as graphene oxide, folic acid, gold, mesopores silica, and various polymers and copolymer, polyethylene glycol, cyclodextrin, chitosan. The nanocarriers have been characterized by particle size, zeta potential, aptamer conjugation, and drug encapsulation efficiency. Hydrodynamic diameter and Zeta potential can used in order to monitor aptamers' crosslinking, in-vitro drug release, intracellular delivery of nanocarriers, and cellular cytotoxicity assay. Also, they are studied for cellular uptake and internalization to types of cancer cell lines such as colorectal, breast, prostate, leukemia and etc. The results are investigated in in-vivo cytotoxicity assay and cell viability assay. Targeted cancer therapy seems a good and promising strategy to overcome the systemic toxicity of chemotherapy.Öğe Advances in phototheranostic agents: From imaging to targeted therapy(Elsevier Ltd., 2025) Samadzadeh, Meisam; Khosravi, Arezoo; Zarepour, Atefeh; Noei, Hadi; Sivakumar, Ponnurengam Malliappan; Iravani, Siavash; Zarrabi, AliThe recent evolution of phototheranostic agents represents a groundbreaking intersection of diagnostic imaging and targeted therapy, particularly in oncology. This review aims to elucidate the recent advances in phototheranostic agents, highlighting their dual functionality in imaging and targeted therapy. Despite significant progress, several challenges persist, including the optimization of agent specificity, light penetration in tissues, and the potential for off-target effects. The variability in tumor microenvironments presents a significant obstacle, complicating the development of universal phototheranostic agents. Moreover, concerns regarding the long-term stability, potential toxicity, and biocompatibility of these agents necessitate thorough evaluation and optimization. Notably, the complexity of designing nanoparticles that can effectively deliver both imaging and therapeutic modalities poses additional hurdles. Future perspectives in this field emphasize the need for innovative strategies to enhance agent stability, biocompatibility, and targeted delivery. Furthermore, ongoing research focuses on the development of novel light-based techniques and the exploration of combination therapies to improve treatment efficacy. By addressing these challenges, the potential of phototheranostic agents to transform personalized cancer therapy becomes increasingly promising. This review serves as a comprehensive overview of the current landscape, challenges, and future directions in phototheranostic research, ultimately aiming to inform and inspire further investigation in this dynamic field. © 2025 Elsevier LtdÖğe Advances in understanding the role of P-gp in doxorubicin resistance: molecular pathways, therapeutic strategies, and prospects(Elsevier, 2022) Mirzaei, Sepideh; Gholami, Mohammad Hossein; Hashemi, Farid; Zabolian, Amirhossein; Zarrabi, AliP-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1?, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity. © 2021 The Author(s)Öğe Advancing personalized medicine: Integrating statistical algorithms with omics and nano-omics for enhanced diagnostic accuracy and treatment efficacy(Elsevier, 2024) Coşkun, Abdurrahman; Ertaylan, Gökhan; Pusparum, Murih; Van Hoof, Rebekka; Kaya, Zelal Zuhal; Khosravi, Arezoo; Zarrabi, AliMedical laboratory services enable precise measurement of thousands of biomolecules and have become an inseparable part of high-quality healthcare services, exerting a profound influence on global health outcomes. The integration of omics technologies into laboratory medicine has transformed healthcare, enabling personalized treatments and interventions based on individuals' distinct genetic and metabolic profiles. Interpreting laboratory data relies on reliable reference values. Presently, population-derived references are used for individuals, risking misinterpretation due to population heterogeneity, and leading to medical errors. Thus, personalized references are crucial for precise interpretation of individual laboratory results, and the interpretation of omics data should be based on individualized reference values. We reviewed recent advancements in personalized laboratory medicine, focusing on personalized omics, and discussed strategies for implementing personalized statistical approaches in omics technologies to improve global health and concluded that personalized statistical algorithms for interpretation of omics data have great potential to enhance global health. Finally, we demonstrated that the convergence of nanotechnology and omics sciences is transforming personalized laboratory medicine by providing unparalleled diagnostic precision and innovative therapeutic strategies.Öğe Alginate-based nanocomposite incorporating chitosan nanoparticles: A dual-drug delivery system for infection control and wound regeneration(Editions de sante, 2025) Mousavi, Seyed Javad; Heydari, Parisa; Javaherchi, Pouya; Kharazi, Anoushe Zargar; Zarrabi, AliIn this study, a hydrogel-based nanocomposite was fabricated as a novel wound dressing and drug delivery system. Initially, insulin-loaded chitosan nanoparticles (CSNP-INS) were produced using the ionic gelation technique. Subsequently, the CSNP-INS were introduced into ciprofloxacin-loaded sodium alginate (SA-Cip) hydrogel at two different concentrations (0.5 % and 1 % w/v), followed by crosslinking with CaCl2 after freezedrying to enhance its physical and biological properties. The CSNP-INS nanoparticles had an average size of 173.6 f 1.76 nm and effectively encapsulated 70 % of the INS. Physicochemical characterization revealed that SA-Cip/1%CSNP-INS has significant swelling (2996 f 31.55 %) and high hydrophilicity (16.94 f 0.99 degrees), along with slow degradation due to the electrostatic interaction between CSNP and SA hydrogel (80 % weight loss after 14 days). Moreover, the mechanical properties were enhanced due to the higher concentration of CSNP (83 f 1.9 kPa), with a Young's modulus of 83 f 1.9 kPa. The release profile of INS after incorporation of CSNP-INS into the hydrogel was slower and more sustained. On the other hand, Cip showed a burst release (100 % within 6 h). In vitro assays of the fabricated hydrogels on fibroblastic cells demonstrated high cell viability, enhanced cell migration, and complete in-vitro wound closure (100 % within 24 h). Further analysis of the inflammatory response of hydrogels revealed a significant impact on modulating inflammation markers including a decrease in TNF-alpha and an increase in TGF-beta. Cip and INS facilitate different wound-healing stages, ensuring efficient and accelerated wound healing. This study underscores the potential of the developed hydrogel as groundbreaking wound dressing, offering enhanced wound healing capabilities through an innovative mechanism of controlled and sustained drug release.Öğe Ambient pressure dried graphene oxide-silica composite aerogels as pharmaceutical nanocarriers(Springer, 2025) Salihi, Elif Çalışkan; Zarrabi, Ali; Zarepour, Atefeh; Gürboğa, Merve; Hasan Niari Niar, Shalaleh; Özakpınar, Özlem Bingöl; Wang, Jiabin; Daştan, Havva; Khosravi, Arezoo; Šiller, LidijaResearch on the production of graphene, its derivatives and composites has been enhanced in the past two decades. Graphene is well known for its exceptional physicochemical properties including extensive surface area, good biocompatibility, high loading capacity, and functionalization capability which make it an ideal candidate for drug delivery systems. When compared to the other nanomaterials, aerogels are relatively new materials characterized by their unparalleled porosities and extensive surface areas. The ability to carry drugs is crucial in drug delivery systems, and the large surface area of graphene coupled with the high porosity of aerogels presents a significant potential for use in this domain. In this study, graphene oxide-silica composite aerogel nanostructures were synthesized firstly, using the sol-gel method and ambient pressure drying technique which offer advantages in terms of both time and cost efficiency. Then, the formulation was also fabricated in the functionalized forms with sodium dodecyl sulfate, polyvinylpyrrolidone and ethylenediaminetetraacetic acid. Different physicochemical characteristics of these new materials were investigated using SEM/EDS, XRD, Raman spectroscopy, FTIR spectroscopy, TGA and DLS techniques. Drug loading tests were done using curcumin and methylene blue, while the biocompatibility of the nanocarriers was assessed through cell viability assay. Results of different tests confirmed the successful fabrication of the aerogels with different functionalizations, which had encapsulation capacity ranged between 20–90% and high biocompatibility after exposing with cells. Based on these promising results, this study confirms that aerogel-based platforms produced have potential to be used as nanocarriers for drug delivery systems. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.Öğe Amine-functionalized mesoporous silica nanoparticles decorated by silver nanoparticles for delivery of doxorubicin in breast and cervical cancer cells(Elsevier, 2024) Ghobadi, Melika; Salehi, Saeideh; Ardestani, Mohammad Taha Salmanifard; Mousavi-Khattat, Mohammad; Shakeran, Zahra; Khosravi, Arezoo; Cordani, Marco; Zarrabi, AliNanocarriers have demonstrated promising potential in the delivery of various anticancer drugs and in improving the efficiency of the treatment. In this study, silver nanoparticles (AgNPs) were green-synthesized using the extracts of different parts of the pomegranate plant, including the peel, flower petals, and calyx. To obtain the most efficient extract used for the green synthesis of AgNPs, all three types of synthesized nanoparticles were characterized. Then, (3-Aminopropyl) triethoxysilane-functionalized mesoporous silica nanoparticles (MSNs-APTES) decorated with AgNPs were fabricated via a one-pot green-synthesis method. AgNPs were directly coated on the surface of MSNs-APTES by adding pomegranate extract enriched with a source of reducing agent leading to converting the silver ion to AgNPs. The MSN-APTES-AgNPs (MSNs-AgNPs) have been thoroughly characterized using nanoparticle characterization techniques. In addition, DNA cleavage and hemolysis activities of the synthesized nanoparticles were analyzed, confirming the biocompatibility of synthesized nanoparticles. The Doxorubicin (DOX, as a breast/cervical anti-cancer drug) loading (42.8%) and release profiles were investigated via UV-visible spectroscopy. The fibroblast, breast cancer, and cervical cancer cells' viability against DOX-loaded nanoparticles were also studied. The results of this high drug loading, uniform shape, and small functionalized nanoparticles demonstrated its great potential for breast and cervical cancer management.Öğe Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance(Elsevier b.v., 2025) Sivakumar, Ponnurengam Malliappan; Zarepour, Atefeh; Akhter, Sohail; Perumal, Govindaraj; Khosravi, Arezoo; Balasekar, Premkumar; Zarrabi, AliRecently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity. This review underscores the significance of anionic polysaccharides as essential components of the evolving landscape of cancer therapy and theranostics. These polymers can be tailored to carry a wide range of therapeutic cargo, including chemotherapeutic agents, nucleic acids, and imaging agents. Their negative charge enables electrostatic interactions with positively charged drugs and facilitates the formation of stable nanoparticles, liposomes, or hydrogels for controlled drug release. Additionally, their hydrophilic nature aids in prolonging circulation time, reducing drug degradation, and minimizing off-target effects. Besides, some of them could act as targeting agents or therapeutic compounds that lead to improved therapeutic performance. This review offers valuable information for researchers, clinicians, and biomedical engineers. It provides insights into the recent progress in the applications of anionic polysaccharide-based delivery platforms in cancer theranostics to transform patient outcomes.Öğe Antimicrobial activity of blow spun PLA/gelatin nanofibers containing green synthesized silver nanoparticles against wound ınfection-causing bacteria(MDPI, 2022) Sardareh, Elham Alinezhad; Shahzeidi, Moloud; Ardestani, Mohammad Taha Salmanifard; Mousavi-Khattat, Mohammad; Zarepour, Atefeh; Zarrabi, AliOne of the main challenges in wound healing is the wound infection due to various causes, of which moisture is the most important reason. Owing to this fact, wound dressings that can collect wound moisture in addition to showing antibacterial properties have provided an important basis for wound healing research. In this study, gelatin and poly lactic acid (PLA) polymers were used in a wound dressing textile to provide gelation and structure strength properties, respectively. Meanwhile, silver nanoparticles (SNPs) synthesized through the green method were integrated into these fibers to provide the formed textile with antibacterial properties. Nanoparticles were made using donkey dung extract, and nanofibers were produced by the solution blow spinning method which has high production efficiency and low energy consumption among spinning methods. The produced nanoparticles were characterized and evaluated by UV-Vis, DLS, XRD, and FTIR methods, and the production of silver nanoparticles that were coated with metabolites in the extract was proven. In addition, the morphology and diameter of the resulted fibers and presence of nanoparticles were confirmed by the SEM method. The size and size distribution of the synthesized fibers were determined through analyzing SEM results. Gelatin nanofibers demonstrated a mean size of 743 nm before and 773 nm after nanoparticle coating. PLA nanofibers demonstrated a mean size of 57 nm before and 182 nm after nanoparticle coating. Finally, 335 nm was the mean diameter size of gelatin/PLA/SNPs nanofibers. Also, the textiles synthesized by PLA and gelatin which contained silver nanoparticles showed higher antibacterial activity against both gram-positive and gram-negative species compared to PLA and gelatin tissues without nanoparticles. Cytotoxicity test on L929 cells showed that silver nanoparticles incorporated textiles of PLA and gelatin show a very low level and non-significant toxicity compared to the free particles.Öğe Association of clinical features with spike glycoprotein mutations in Iranian COVID-19 patients(MDPI, 2022) Ahangarzadeh, Shahrzad; Yousefi, Alireza; Ranjbar, Mohammad Mehdi; Dabiri, Arezou; Zarepour, Atefeh; Sadeghi, Mahmoud; Heidari, Elham; Mazrui, Fariba; Hosseinzadeh, Majid; Ataei, Behrooz; Zarrabi, Ali; Shariati, Laleh; Javanmard, Shaghayegh HaghjooyBackground: Mutations in spike glycoprotein, a critical protein of SARS-CoV-2, could directly impact pathogenicity and virulence. The D614G mutation, a non-synonymous mutation at position 614 of the spike glycoprotein, is a predominant variant circulating worldwide. This study investigated the occurrence of mutations in the crucial zone of the spike gene and the association of clinical symptoms with spike mutations in isolated viruses from Iranian patients infected with SARS-CoV-2 during the second and third waves of the COVID-19 epidemic in Isfahan, the third-largest city in Iran. Methods: The extracted RNA from 60 nasopharyngeal samples of COVID-19 patients were subjected to cDNA synthesis and RT-PCR (in three overlapping fragments). Each patient's reverse transcriptase polymerase chain reaction (RT-PCR) products were assembled and sequenced. Information and clinical features of all sixty patients were collected, summarized, and analyzed using the GENMOD procedure of SAS 9.4. Results: Analysis of 60 assembled sequences identified nine nonsynonymous mutations. The D614G mutation has the highest frequency among the amino acid changes. In our study, in 31 patients (51.66%), D614G mutation was determined. For all the studied symptoms, no significant relationship was observed with the incidence of D614G mutation. Conclusions: D614G, a common mutation among several of the variants of SARS-CoV-2, had the highest frequency among the studied sequences and its frequency increased significantly in the samples of the third wave compared to the samples of the second wave of the disease.Öğe Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications(Mdpi, 2023) Pirmoradi, Leila; Shojaei, Shahla; Ghavami, Saeid; Zarepour, Atefeh; Zarrabi, AliMacroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.Öğe Bacterial nanocelluloses as sustainable biomaterials for advanced wound healing and dressings(Royal Society of Chemistry, 2024) Zarepour, Atefeh; Gök, Bahar; Budama Kılınç, Yasemin; Khosravi, Arezoo; Iravani, Siavash; Zarrabi, AliWound healing remains a significant clinical challenge, calling for innovative approaches to expedite the recovery process and improve patient outcomes. Bacterial nanocelluloses (BNCs) have emerged as a promising solution in the field of wound healing and dressings due to their unique properties such as high crystallinity, mechanical strength, high purity, porosity, high water absorption capacity, biodegradability, biocompatibility, sustainability, and flexibility. BNC-based materials can be applied for the treatment of different types of wounds, from second-degree burns to skin tears, biopsy sites, and diabetic and ischemic wounds. BNC-based dressings have exceptional mechanical properties such as flexibility and strength, which ensure proper wound coverage and protection. The renewable nature, eco-friendly production process, longer lifespan, and potential for biodegradability of BNCs make them a more sustainable alternative to conventional wound care materials. This review aims to provide a detailed overview on the application of BNC-based composites for wound healing and dressings via highlighting their ability as a carrier for delivery of different types of antimicrobial compounds as well as their direct effect on the healing process. Besides, it mentions some of the in vivo and clinical studies using BNC-based dressings and describes challenges related to the application of these materials as well as their future directions. © 2024 The Royal Society of Chemistry.Öğe Biohybrid Micro/Nanorobots: Pioneering the Next Generation of Medical Technology(John Wiley and Sons Inc, 2024) Zarepour, Atefeh; Khosravi, Arezoo; Iravani, Siavash; Zarrabi, AliBiohybrid micro/nanorobots hold a great potential for advancing biomedical research. These tiny structures, designed to mimic biological organisms, offer a promising method for targeted drug delivery, tissue engineering, biosensing/imaging, and cancer therapy, among other applications. The integration of biology and robotics opens new possibilities for minimally invasive surgeries and personalized healthcare solutions. The key challenges in the development of biohybrid micro/nanorobots include ensuring biocompatibility, addressing manufacturing scalability, enhancing navigation and localization capabilities, maintaining stability in dynamic biological environments, navigating regulatory hurdles, and successfully translating these innovative technologies into clinical applications. Herein, the recent advancements, challenges, and future perspectives related to the biomedical applications of biohybrid micro/nanorobots are described. Indeed, this review sheds light on the cutting-edge developments in this field, providing researchers with an updated overview of the current potential of biohybrid micro/nanorobots in the realm of biomedical applications, and offering insights into their practical applications. Furthermore, it delves into recent advancements in the field of biohybrid micro/nanorobotics, providing a comprehensive analysis of the current state-of-the-art technologies and their future applications in the biomedical field. © 2024 The Author(s). Advanced Healthcare Materials published by Wiley-VCH GmbH.Öğe Bioinspired Nanomaterials to Combat Microbial Biofilm and Pathogen Challenges: A Review(American Chemical Society, 2024) Zarepour, Atefeh; Venkateswaran, Meenakshi R.; Khosravi, Arezoo; Iravani, Siavash; Zarrabi, AliThe emergence of antibiotic-resistant biofilms poses a significant challenge in healthcare, as these complex microbial communities demonstrate an increased resistance to conventional treatment methods. Traditional antibiotics often fail against biofilms, resulting in persistent infections and treatment failures. To address this urgent issue, innovative strategies such as bioinspired nanomaterials, antimicrobial peptides, quorum sensing inhibitors, and combination therapies show promise in disrupting biofilm structures, enhancing antimicrobial activity, and overcoming resistance mechanisms. Bioinspired nanomaterials have emerged as a pivotal approach for tackling the challenges presented by biofilms and microbial pathogens across various sectors, including healthcare, industry, and environmental protection. Their advantages include enhanced biocompatibility, targeted delivery, and improved efficacy against biofilm formation and microbial threats. Recent advancements highlight the potential of innovative solutions, such as antimicrobial nanoparticles, smart nanocarriers, surface modifications, and nanozymes, in combating biofilm-related issues. Despite significant progress in bioinspired nanomaterial research, challenges remain. The intricate interactions within biofilms and the evolving nature of microbial pathogens necessitate multidisciplinary approaches. Furthermore, translating laboratory findings into practical applications faces obstacles related to scalability, stability, and regulatory compliance. Future advancements in bioinspired nanomaterials are expected to focus on multifunctional nanoparticles that disrupt biofilms, advanced surface modifications for better interaction, smart nanocarriers for targeted delivery, and innovative nanozymes to dismantle biofilm structures. This review focuses on the development and application of bioinspired nanoparticles to address microbial biofilm and pathogen challenges. It emphasizes the roles of antimicrobial nanoparticles, surface modifications, smart nanocarriers, and nanozymes in enhancing the efficacy and targeting capabilities. Additionally, the review explores the potential of bioinspired nanomaterials in formulating biofilm management practices, providing insights into the advantages, limitations, and future perspectives of these innovative approaches. © 2024 American Chemical Society.Öğe Bioprinted membranes for corneal tissue engineering: a review(MDPI, 2022) Orash Mahmoud Salehi, Amin; Poursamar, Seyed Ali; Zarrabi, Ali; Sefat, Farshid; Mamidi, Narsimha; Behrouz, Mahmoud Jabbarvand; Rafienia, MohammadCorneal transplantation is considered a convenient strategy for various types of corneal disease needs. Even though it has been applied as a suitable solution for most corneal disorders, patients still face several issues due to a lack of healthy donor corneas, and rejection is another unknown risk of corneal transplant tissue. Corneal tissue engineering (CTE) has gained significant consideration as an efficient approach to developing tissue-engineered scaffolds for corneal healing and regeneration. Several approaches are tested to develop a substrate with equal transmittance and mechanical properties to improve the regeneration of cornea tissue. In this regard, bioprinted scaffolds have recently received sufficient attention in simulating corneal structure, owing to their spectacular spatial control which produces a three-cell-loaded-dimensional corneal structure. In this review, the anatomy and function of different layers of corneal tissue are highlighted, and then the potential of the 3D bioprinting technique for promoting corneal regeneration is also discussed. © 2022 by the authors.Öğe Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection(Royal soc chemistry, 2024) Fathi-karkan, Sonia; Sargazi, Saman; Shojaei, Shirin; Farasati Far, Bahareh; Mirinejad, Shekoufeh; Cordani, Marco; Khosravi, Arezoo; Zarrabi, Ali; Ghavami, SaeidElectrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools. Biotin-functionalized nanoparticles enhance cancer detection by targeting biotin receptors, which are overexpressed on cancer cells. This targeted approach improves imaging accuracy and efficacy in identifying cancerous tissues.Öğe c-FLIP/Ku70 complex; A potential molecular target for apoptosis induction in hepatocellular carcinoma(Academic press inc., 2025) Haghir-Sharif-Zamini, Yasamin; Khosravi, Arezoo; Hassan, Moustapha; Zarrabi, Ali; Vosough, MassoudHepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide and the most common form of liver cancer. Despite global efforts toward early diagnosis and effective treatments, HCC is often diagnosed at advanced stages, where conventional therapies frequently lead to resistance and/or high recurrence rates. Therefore, novel biomarkers and promising medications are urgently required. Epi-drugs, or epigenetic-based medicines, have recently emerged as a promising therapeutic modality. Since the epigenome of the cancer cells is always dysregulated and this is followed by apoptosis-resistance, reprogramming the epigenome of cancer cells by epi-drugs (such as HDAC inhibitors (HDACis), and DNMT inhibitors (DNMTis)) could be an alternative approach to use in concert with established treatment protocols. C-FLIP, an anti-apoptotic protein, and Ku70, a member of the DNA repair system, bind together and make a cytoplasmic complex in certain cancers and induce resistance to apoptosis. Many epi-drugs, such as HDACis, can dissociate this complex through Ku70 acetylation and activate cellular apoptosis. The novel compounds for dissociating this complex could provide an innovative insight into molecular targeted HCC treatments. In this review, we address the innovative therapeutic potential of targeting c-FLIP/Ku70 complex by epi-drugs, particularly HDACis, to overcome apoptosis resistance of HCC cells. This review will cover the mechanisms by which the c-FLIP/Ku70 complex facilitates cancer cell survival, the impact of epigenetic alterations on the complex dissociation, and highlight HDACis potential in combination therapies, biomarker developments and mechanistic overviews. This review highlights c-FLIP ubiquitination and Ku70 acetylation levels as diagnostic and prognostic tools in HCC management.Öğe Cancer-Associated Fibroblasts Regulate the Plasticity of Breast Cancer Stemness through the Production of Leukemia Inhibitory Factor(Multidisciplinary Digital Publishing Institute (MDPI), 2021) Vaziri, N.; Shariati, L.; Zarrabi, Ali; Farazmand, A.; Javanmard, S.H.Leukemia inhibitory factor (LIF), as a member of the interleukin-6 cytokine family, plays a complex role in solid tumors. However, the effect of LIF as a tumor microenvironment factor on plasticity control in breast cancer remains largely unknown. In this study, an in vitro investigation is conducted to determine the crosstalk between breast cancer cells and fibroblasts. Based on the results, cancer-associated fibroblasts are producers of LIF in the cocultivation system with breast cancer cells. Treatment with the CAF-CM and human LIF protein significantly promoted stemness through the dedifferentiation process and regaining of stem-cell-like properties. In addition, the results indicate that activation of LIFR signaling in breast cancer cells in the existence of CAF-secreted LIF can induce Nanog and Oct4 expression and increase breast cancer stem cell markers CD24?/CD44+. In contrast, suppression of the LIF receptor by human LIF receptor inhibition antibody decreased the cancer stem cell markers. We found that LIF was frequently overexpressed by CAFs and that LIF expression is necessary for dedifferentiation of breast cancer cell phenotype and regaining of cancer stem cell properties. Our results suggest that targeting LIF/LIFR signaling might be a potent therapeutic strategy for breast cancer and the prevention of tumor recurrence.