Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Zaman, Buse Tugba" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Biogenic synthesis of novel nanomaterials and their applications
    (Royal Soc Chemistry, 2023) Chormey, Dotse Selali; Zaman, Buse Tugba; Borahan Kustanto, Tuelay; Erarpat Bodur, Sezin; Bodur, Sueleyman; Tekin, Zeynep; Nejati, Omid
    Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry. Synthesis of nanoparticles of different shapes and sizes using biological precursors and their applications.
  • Küçük Resim Yok
    Öğe
    Deep eutectic solvents for the determination of endocrine disrupting chemicals
    (Elsevier, 2024) Chormey, Dotse Selali; Zaman, Buse Tugba; Kustanto, Tulay Borahan; Bodur, Sezin Erarpat; Bodur, Suleyman; Er, Elif Ozturk; Bakirdere, Sezgin
    The harmful effects of endocrine disrupting chemicals (EDCs) to humans and other organisms in the environment have been well established over the years, and more studies are ongoing to classify other chemicals that have the potential to alter or disrupt the regular function of the endocrine system. In addition to toxicological studies, analytical detection systems are progressively being improved to facilitate accurate determination of EDCs in biological, environmental and food samples. Recent microextraction methods have focused on the use of green chemicals that are safe for analytical applications, and present very low or no toxicity upon disposal. Deep eutectic solvents (DESs) have emerged as one of the viable alternatives to the conventional hazardous solvents, and their unique properties make them very useful in different applications. Notably, the use of renewable sources to prepare DESs leads to highly biodegradable products that mitigate negative ecological impacts. This review presents an overview of both organic and inorganic EDCs and their ramifications on human health. It also presents the fundamental principles of liquid phase and solid phase microextraction methods, and gives a comprehensive account of the use of DESs for the determination of EDCs in various samples.
  • Küçük Resim Yok
    Öğe
    Microwave-assisted hydrothermal green synthesis of selenium nanoparticles incorporated with hyaluronic acid methacrylate/gelatin methacrylate hydrogels for wound healing applications
    (Wiley, 2024) Nejati, Omid; Tisli, Busra; Yasayan, Gokcen; Zaman, Buse Tugba; Torkay, Gulsah; Donmez, Mustafa; Kayin, Inci
    Wound healing is a topic of significant interest in current times, owing to the escalating incidence of chronic diseases associated with impaired healing, as well as the growing number of elderly individuals within the population. Amongst the various approaches for fabrication of wound healing dressings, the utilization of selenium-based nanoparticles has garnered considerable attention due to selenium's numerous advantages, including antioxidant, antiviral, antibacterial, and antifungal activities. With this perspective, we focused on the fabrication and characterization of hydrogels incorporated with selenium nanoparticles (SeNPs). In this work, we have developed a microwave-assisted hydrothermal synthesis strategy for synthesis of the SeNPs that employ non-toxic precursors, thereby reducing the risk of environmental toxicity and providing a cost-effective alternative to conventional chemical and hydrothermal methods. Subsequently, we have successfully incorporated SeNPs into hyaluronic acid methacrylate/gelatin methacrylate-based hydrogels. Hyaluronic acid and gelatin are selected to support the healing process further, and these polymers are methacrylated in order to further control mechanical properties of the hydrogel and improve the stability of the dressing. The nanoparticles and the nanoparticle-incorporated hydrogels were characterized by various techniques including Fourier transform infrared spectroscopy, UV-Vis spectroscopy, scanning electron microscopy, and dynamic light scattering instruments. Mechanical behaviors, swelling and degradation properties of the dressings were evaluated. Afterwards, we have conducted cell culture studies with SeNPs-loaded hydrogels to determine the efficacy of SeNPs in wound healing. According to experimental findings, in vitro scratch assay suggests that a hydrogel dressing containing SeNPs (HG-SeNp2) support the cell migration more compared to other samples incorporated with nanoparticles and to the control study at 24 h, and the wound closure percentage was found to be statistically significant compared with the control study. This dressing hold promise as effective wound dressings that can facilitate and expedite the process of wound healing.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim