Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Tutar, Bahar Karademir" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    An accurate and sensitive determination of selected pesticides in mixed fruit juice samples using the combination of a simple and efficient microextraction method and GC-MS with a matrix matching calibration strategy
    (Royal Soc Chemistry, 2024) Bodur, Sueleyman; Tutar, Bahar Karademir; Tutar, Omer Faruk; Bakirdere, Sezgin
    Pesticides have been used on several fruits, vegetables and cereals to control harmful organisms in order to increase the quality of products; however, these substances cause serious health effects. Therefore, an accurate and sensitive analytical method should be developed for the determination of pesticides to evaluate their toxicity. In this study, an efficient microextraction strategy was applied to preconcentrate eight different selected pesticides from mixed fruit juice samples prior to gas chromatography-mass spectrometry detection. All significant parameters such as spraying number, extraction solvent type, sample volume and mixing type/period belonging to the developed extraction method were elaborately optimized to get low detection limits. After the optimization studies, system analytical performance studies were carried out and limit of detection (LOD) values varied from 0.04 mu g /kg-1 to 1.99 mu g kg-1 (mass based) for the selected analytes. Under the optimum experimental conditions, spiking recovery experiments were performed in the mixed fruit juice samples to evaluate the applicability and accuracy of the proposed method. The recovery results were recorded in the range of 81.4-123.5% with acceptable standard deviations by applying a matrix matching calibration strategy. The proposed analytical method can be used for the qualitative and quantitative determination of selected pesticides in the mixed fruit juice samples and can also be applied to other fruit juice samples using a matrix matching calibration strategy. A simple and efficient microextraction method was proposed to preconcentrate eight different pesticides from mixed fruit juice samples prior to GC-MS measurement.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Determination of copper at trace levels in fennel tea samples by flame atomic absorption spectrometry after the implementation of simultaneous complexation and supramolecular solvent based spraying assisted liquid phase microextraction
    (Academic press inc., 2025) Tutar, Bahar Karademir; Tutar, Ömer Faruk; Bodur, Süleyman; Derin, Yavuz; Tutar, Ahmet; Bakırdere, Sezgin
    A simple and efficient preconcentration method named as supramolecular solvent based spraying assisted liquid phase microextraction (SUPRAS-SA-LPME) was combined with a flame atomic absorption spectrometry (FAAS) for the determination of copper in fennel tea samples at trace levels. An alkanol (1-decanol)/THF based SUPRAS (containing complexation agent) was used as extraction solvent instead of traditional organic solvents for the first time in an SA-LPME process. Under the optimum conditions, system analytical performance of the developed method was evaluated, and limit of detection (LOD)/limit of quantitation (LOQ) values were recorded as 1.91/ 6.37 mu g kg-1. After the evaluation of system analytical performances, the enhancement in detection power/ calibration sensitivity was found to be 21.3/21.8 folds when the comparison of LOD values/calibration plot slopes of the FAAS and SUPRAS-SA-LPME-FAAS systems. The method applicability was tested for the fennel tea samples by spiking experiments, and acceptable recovery results (80.2% - 111.8%) were obtained for low, mid and high spiked concentration levels.
  • Küçük Resim Yok
    Öğe
    Development of dispersive solid phase extraction method for the preconcentration of parathion ethyl as a simulant of nerve agent sarin from soil, plant and water samples prior to GC-MS determination
    (SPRINGER, 27.08.2024) Bodur, Suleyman; Bodur, Sezin Erarpat; Tutar, Bahar Karademir; Bakirdere, Sezgin; Yagmuroglu, Ozan
    In the presented study, an efficient and fast analytical method was developed for the determination of parathion ethyl as sarin simulant by gas chromatography-mass spectrometry (GC-MS). Dispersive solid phase extraction (DSPE) was performed to concentrate parathion ethyl from soil, plant and water samples. Reduced graphene oxide-iron (II, III) oxide (rGO-Fe3O4) nanocomposite was used as an adsorbent to collect the target analyte from the aqueous sample solutions. After the optimization of extraction/preconcentration parameters, optimum conditions for adsorbent amount, eluent type, mixing type/period, eluent volume and initial sample volume were determined as 15 mg, acetonitrile, vortex/30 s, 100 mu L and 10 mL, respectively. Under the optimum conditions, analytical performance of the developed DSPE-GC-MS method was evaluated in terms of limit of detection (LOD), limit of quantitation (LOQ) and dynamic range. Dynamic range, LOD and LOQ values were figured out to be 0.94-235.15 mu g/kg, 0.41 mu g/kg and 1.36 mu g/kg (mass based), respectively. Satisfactory percent recovery results (90.3-125% for soil, 93.5-108.7% for plant, 88.5-112.9% for tap water) were achieved for soil, plant and tap water samples which proved the accuracy and applicability of the developed method. It is predicted that the DSPE-GC-MS method can be accurately used for the detection of sarin in soil, plant and water samples taken from war territories.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Development of dispersive solid phase extraction method for the preconcentration of parathion ethyl as a simulant of nerve agent sarin from soil, plant and water samples prior to GC–MS determination
    (Springer Science and Business Media Deutschland GmbH, 2024) Bodur, Süleyman; Bodur, Sezin Erarpat; Tutar, Bahar Karademir; Bakırdere, Sezgin; Yağmuroğlu, Ozan
    In the presented study, an efficient and fast analytical method was developed for the determination of parathion ethyl as sarin simulant by gas chromatography–mass spectrometry (GC–MS). Dispersive solid phase extraction (DSPE) was performed to concentrate parathion ethyl from soil, plant and water samples. Reduced graphene oxide–iron (II, III) oxide (rGO-Fe3O4) nanocomposite was used as an adsorbent to collect the target analyte from the aqueous sample solutions. After the optimization of extraction/preconcentration parameters, optimum conditions for adsorbent amount, eluent type, mixing type/period, eluent volume and initial sample volume were determined as 15 mg, acetonitrile, vortex/30 s, 100 µL and 10 mL, respectively. Under the optimum conditions, analytical performance of the developed DSPE-GC–MS method was evaluated in terms of limit of detection (LOD), limit of quantitation (LOQ) and dynamic range. Dynamic range, LOD and LOQ values were figured out to be 0.94–235.15 µg/kg, 0.41 µg/kg and 1.36 µg/kg (mass based), respectively. Satisfactory percent recovery results (90.3–125% for soil, 93.5–108.7% for plant, 88.5–112.9% for tap water) were achieved for soil, plant and tap water samples which proved the accuracy and applicability of the developed method. It is predicted that the DSPE-GC–MS method can be accurately used for the detection of sarin in soil, plant and water samples taken from war territories. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim