Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Topuz, Kazim" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    An analytical approach to evaluate the impact of age demographics in a pandemic
    (Springer, 2023) Abdulrashid, Ismail; Friji, Hamdi; Topuz, Kazim; Ghazzai, Hakim; Delen, Dursun; Massoud, Yehia
    The time required to identify and confirm risk factors for new diseases and to design an appropriate treatment strategy is one of the most significant obstacles medical professionals face. Traditionally, this approach entails several clinical studies that may last several years, during which time strict preventative measures must be in place to contain the epidemic and limit the number of fatalities. Analytical tools may be used to direct and accelerate this process. This study introduces a six-state compartmental model to explain and assess the impact of age demographics by designing a dynamic, explainable analytics model of the SARS-CoV-2 coronavirus. An age-stratified mathematical model taking the form of a deterministic system of ordinary differential equations divides the population into different age groups to better understand and assess the impact of age on mortality. It also provides a more accurate and effective interpretation of the disease evolution, specifically in terms of the cumulative numbers of infected cases and deaths. The proposed Kermack-Mckendrick model is incorporated into a non-linear least-squares optimization curve-fitting problem whose optimized parameters are numerically obtained using the Levenberg-Marquard algorithm. The curve-fitting model's efficiency is proved by testing the age-stratified model's performance on three U.S. states: Connecticut, North Dakota, and South Dakota. Our results confirm that splitting the population into different age groups leads to better fitting and forecasting results overall as compared to those achieved by the traditional method, i.e., without age groups. By using comprehensive models that account for age, gender, and ethnicity, regional public health authorities may be able to avoid future epidemics from inflicting more fatalities and establish a public health policy that reduces the burden on the elderly population.
  • Küçük Resim Yok
    Öğe
    A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases
    (Springer, 2023) Topuz, Kazim; Davazdahemami, Behrooz; Delen, Dursun
    During a pandemic, medical specialists have substantial challenges in discovering and validating new disease risk factors and designing effective treatment strategies. Traditionally, this approach entails several clinical studies and trials that might last several years, during which strict preventive measures are enforced to manage the outbreak and limit the death toll. Advanced data analytics technologies, on the other hand, could be utilized to monitor and expedite the procedure. This research integrates evolutionary search algorithms, Bayesian belief networks, and innovative interpretation techniques to provide a comprehensive exploratory-descriptive-explanatory machine learning methodology to assist clinical decision-makers in responding promptly to pandemic scenarios. The proposed approach is illustrated through a case study in which the survival of COVID-19 patients is determined using inpatient and emergency department (ED) encounters from a real-world electronic health record database. Following an exploratory phase in which genetic algorithms are used to identify a set of the most critical chronic risk factors and their validation using descriptive tools based on the concept of Bayesian Belief Nets, the framework develops and trains a probabilistic graphical model to explain and predict patient survival (with an AUC of 0.92). Finally, a publicly available online, probabilistic decision support inference simulator was constructed to facilitate what-if analysis and aid general users and healthcare professionals in interpreting model findings. The results widely corroborate intensive and expensive clinical trial research assessments.
  • Küçük Resim Yok
    Öğe
    Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents
    (Pergamon-Elsevier Science Ltd, 2023) Cankaya, Burak; Topuz, Kazim; Delen, Dursun; Glassman, Aaron
    Understanding the factors behind aviation incidents is essential, not only because of the lethality of the accidents but also the incidents' direct and indirect economic impact. Even minor incidents trigger sig-nificant economic damage and create disruptions to aviation operations. It is crucial to investigate these incidents to understand the underlying reasons and hence, reduce the risk associated with physical and financial safety in a precarious industry like aviation. The findings may provide decision-makers with a causally accurate means of investigating the topic while untangling the difficulties concerning the statisti-cal associations and causal effects. This research aims to identify the significant variables and their prob-abilistic dependencies/relationships determining the degree of aircraft damage. The value and the contri-bution of this study include (1) developing a fully automatic ML prediction-based DSS for aircraft damage severity, (2) conducting a deep network analysis of affinity between predicting variables using probabilis-tic graphical modeling (PGM), and (3) implementing a user-friendly dashboard to interpret the business insight coming from the design and development of the Bayesian Belief Network (BBN). By leveraging a large, real-world dataset, the proposed methodology captures the probability-based interrelations among air terminal, flight, flight crew, and air-vehicle-related characteristics as explanatory variables, thereby re-vealing the underlying, complex interactions in accident severity. This research contributes significantly to the current body of knowledge by defining and proving a methodology for automatically categoriz-ing aircraft damage severity based on flight, aircraft, and PIC (pilot in command) information. Moreover, the study combines the findings of the Bayesian Belief Networks with decades of aviation expertise of the subject matter expert, drawing and explaining the association map to find the root causes of the problems and accident relayed variables. & COPY; 2023 Elsevier Ltd. All rights reserved.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim