Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Tanha, Jafar" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Viewpoint-Based Collaborative Feature-Weighted Multi-View Intuitionistic Fuzzy Clustering Using Neighborhood Information
    (Elsevier B.V., 2025) Golzari Oskouei, Amin; Samadi, Negin; Tanha, Jafar; Bouyer, Asgarali; Arasteh, Bahman
    This paper presents an intuitionistic fuzzy c-means-based clustering algorithm for multi-view clustering, addressing key challenges such as noise sensitivity, outlier influence, and the distinct importance of views, features, and samples. Our proposed approach incorporates view weights, feature weights, sample weights, and neighborhood information into a novel objective function. Additionally, we introduce an effective initial cluster center selection strategy that enhances clustering robustness. The efficiency of the proposed method is evaluated using various clustering criteria (AR, NMI, RI, FMI, and JI). Moreover, the effect of each module of the algorithm on the general clustering performance is examined exclusively. Experimental results on various benchmark multi-view datasets demonstrate that our algorithm outperforms state-of-the-art methods in terms of clustering accuracy and stability. The source code of the proposed method is accessible at https://github.com/Amin-Golzari-Oskouei/VCoFWMVIFCM. © 2024 Elsevier B.V.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Viewpoint-based collaborative feature-weighted multi-view intuitionistic fuzzy clustering using neighborhood information
    (Elsevier b.v., 2024) Golzari Oskouei, Amin; Samadi, Negin; Tanha, Jafar; Bouyer, Asgarali; Arasteh, Bahman
    This paper presents an intuitionistic fuzzy c-means-based clustering algorithm for multi-view clustering, addressing key challenges such as noise sensitivity, outlier influence, and the distinct importance of views, features, and samples. Our proposed approach incorporates view weights, feature weights, sample weights, and neighborhood information into a novel objective function. Additionally, we introduce an effective initial cluster center selection strategy that enhances clustering robustness. The efficiency of the proposed method is evaluated using various clustering criteria ( AR, NMI, RI, FMI, and JI ). Moreover, the effect of each module of the algorithm on the general clustering performance is examined exclusively. Experimental results on various benchmark multi-view datasets demonstrate that our algorithm outperforms state-of-the-art methods in terms of clustering accuracy and stability. The source code of the proposed method is accessible at https://github.com/Amin-Golzari-Oskouei/VCoFWMVIFCM.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim