Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sojdeh, Soheil" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Magnetic nanocomposites for biomedical applications
    (Elsevier B.V., 2022) Naghdi, Mina; Ghovvati, Mahsa; Rabiee, Navid; Ahmadi, Sepideh; Abbariki, Nikzad; Sojdeh, Soheil; Ojaghi, Amirhossein; Bagherzadeh, Mojtaba; Akhavan, Omid; Sharifi, Esmaeel; Rabiee, Mohammad; Saeb, Mohammad Reza; Bolouri, Keivan; Webster, Thomas J.; Zare, Ehsan Nazarzadeh; Zarrabi, Ali
    Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
  • Yükleniyor...
    Küçük Resim
    Öğe
    N-doped carbon nanospheres as selective fluorescent probes for mercury detection in contaminated aqueous media: chemistry, fluorescence probing, cell line patterning, and liver tissue interaction
    (Springer Science and Business Media Deutschland GmbH, 2023) Sojdeh, Soheil; Banitalebi Dehkordi, Ali; Zarrabi, Ali; Badiei, Alireza; Makvandi, Pooyan
    A precise nano-scale biosensor was developed here to detect Hg2+ in aqueous media. Nitrogen-doped carbon nanospheres (NCS) created from the pyrolysis of melamine–formaldehyde resin were characterized by FESEM, XRD, Raman spectra, EDS, PL, UV–vis spectra, and N2 adsorption–desorption, and were used as a highly selective and sensitive probe for detecting Hg2+ in aqueous media. The sensitivity of NCS to Hg2+ was evaluated by photoluminescence intensity fluctuations under fluorescence emission in the vicinity of 390 nm with a ?exc of 350 nm. The fluorescence intensity of the NCS probe weakened in the presence of Hg2+ owing to the effective fluorescence quenching by that, which is not corresponding to the special covalent liking between the ligand and the metal. The effects of the fluorescence nanoprobe concentration, pH, and sensing time were monitored to acquire the best conditions for determining Hg2+. Surprisingly, NCS revealed excellent selectivity and sensitivity towards Hg2+ in the samples containing Co2+, Na+, K+, Fe2+, Mn2+, Al3+, Pb2+, Ni2+, Ca2+, Cu2+, Mg2+, Cd2+, Cr3+, Li+, Cs+, and Ba2+. The fluorescence response was linearly proportional to Hg2+ concentration in 0.013–0.046 µM with a limit of detection of 9.58 nM. The in vitro and in vivo toxicological analyses confirmed the completely safe and biocompatible features of NCS, which provides promise for use for water, fruit, vegetable, and/or other forms of natural-connected materials exposed to Hg2+, with no significant toxicity noticed toward different cells/organs/tissues. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Promising breakthroughs in amyotrophic lateral sclerosis treatment through nanotechnology's unexplored frontier
    (Elsevier masson s.r.l., 2025) Sojdeh, Soheil; Safarkhani, Moein; Daneshgar, Hossein; Aldhaher, Abdullah; Heidari, Golnaz; Nazarzadeh Zare, Ehsan; Iravani, Siavash; Zarrabi, Ali; Rabiee, Navid
    This review explores the transformative potential of nanotechnology in the treatment and diagnosis of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disorder characterized by motor neuron degeneration, muscle weakness, and eventual paralysis. Nanotechnology offers innovative solutions across various domains, including targeted drug delivery, neuroprotection, gene therapy and editing, biomarker detection, advanced imaging techniques, and tissue engineering. By enhancing the precision and efficacy of therapeutic interventions, nanotechnology facilitates key advancements such as crossing the blood-brain barrier, targeting specific cell types, achieving sustained therapeutic release, and enabling combination therapies tailored to the complex pathophysiology of ALS. Despite its immense promise, the clinical translation of these approaches faces challenges, including potential cytotoxicity, biocompatibility, and regulatory compliance, which must be addressed through rigorous research and testing. This review emphasizes the application of nanotechnology in targeted drug delivery and gene therapy/editing for ALS, drawing on the author's prior work with various nanotechnological platforms to illustrate strategies for overcoming similar obstacles in drug and gene delivery. By bridging the gap between cutting-edge technology and clinical application, this article aims to highlight the vital role of nanotechnology in shaping the future of ALS treatment.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim