Yazar "Soares, Nelson C." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Gut matters in microgravity: potential link of gut microbiota and its metabolites to cardiovascular and musculoskeletal well-being(BioMed Central Ltd, 2024) İbrahim, Zeinab; Khan, Navee Ahmed; Siddiqui, Ruqaiyyah; Qaisar, Rizwan; Marzook, Hezlin; Soares, Nelson C.; Elmoselhi, Adel BThe gut microbiota and its secreted metabolites play a significant role in cardiovascular and musculoskeletal health and diseases. The dysregulation of the intestinal microbiota poses a significant threat to cardiovascular and skeletal muscle well-being. Nonetheless, the precise molecular mechanisms underlying these changes remain unclear. Furthermore, microgravity presents several challenges to cardiovascular and musculoskeletal health compromising muscle strength, endothelial dysfunction, and metabolic changes. The purpose of this review is to critically examine the role of gut microbiota metabolites on cardiovascular and skeletal muscle functions and dysfunctions. It also explores the molecular mechanisms that drive microgravity-induced deconditioning in both cardiovascular and skeletal muscle. Key findings in this review highlight that several alterations in gut microbiota and secreted metabolites in microgravity mirror characteristics seen in cardiovascular and skeletal muscle diseases. Those alterations include increased levels of Firmicutes/Bacteroidetes (F/B) ratio, elevated lipopolysaccharide levels (LPS), increased in para-cresol (p-cresol) and secondary metabolites, along with reduction in bile acids and Akkermansia muciniphila bacteria. Highlighting the potential, modulating gut microbiota in microgravity conditions could play a significant role in mitigating cardiovascular and skeletal muscle diseases not only during space flight but also in prolonged bed rest scenarios here on Earth. © The Author(s) 2024.Öğe Selected Gut Bacteria from Water Monitor Lizard Exhibit Effects against Pathogenic Acanthamoeba castellanii Belonging to the T4 Genotype(Mdpi, 2023) Akbar, Noor; Khan, Naveed Ahmed; Giddey, Alexander D.; Soares, Nelson C.; Alharbi, Ahmad M.; Alfahemi, Hasan; Siddiqui, RuqaiyyahWater monitor lizards (WMLs) reside in unhygienic and challenging ecological surroundings and are routinely exposed to various pathogenic microorganisms. It is possible that their gut microbiota produces substances to counter microbial infections. Here we determine whether selected gut bacteria of water monitor lizards (WMLs) possess anti-amoebic properties using Acanthamoeba castellanii of the T4 genotype. Conditioned media (CM) were prepared from bacteria isolated from WML. The CM were tested using amoebicidal, adhesion, encystation, excystation, cell cytotoxicity and amoeba-mediated host cell cytotoxicity assays in vitro. Amoebicidal assays revealed that CM exhibited anti-amoebic effects. CM inhibited both excystation and encystation in A. castellanii. CM inhibited amoebae binding to and cytotoxicity of host cells. In contrast, CM alone showed limited toxic effects against human cells in vitro. Mass spectrometry revealed several antimicrobials, anticancer, neurotransmitters, anti-depressant and other metabolites with biological functions. Overall, these findings imply that bacteria from unusual places, such as WML gut, produce molecules with anti-acanthamoebic capabilities.