Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sharifi, Esmaeel" seçeneğine göre listele

Listeleniyor 1 - 12 / 12
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Advances in aptamer-based drug delivery vehicles for cancer therapy
    (Elsevier, 2022) Ghasemi, Kousar; Darroudi, Mahdieh; Rahimmanesh, Ilnaz; Ghomi, Matineh; Hassanpour, Mahnaz; Sharifi, Esmaeel; Yousefiasl, Satar; Ahmadi, Sepideh; Zarrabi, Ali; Borzacchiello, Assunta; Rabiee, Mohammad; Paiva-Santos, Ana Cláudia; Rabiee, Navid
    Overall, aptamers are special classes of nucleic acid-based macromolecules that are beginning to investigate because of their capability of avidity binding to a specific target for clinical use. Taking advantage of target-specific medicine led to more effective therapeutic and limitation of side effects of drugs. Herein, we discuss several aptamers and their binding capability and capacity for selecting tumor biomarkers and usage of them as targeting ligands for the functionalization of nanomaterials. We review recent applications based on aptamers and several nanoparticles to rise efficacy and develop carrier systems such as graphene oxide, folic acid, gold, mesopores silica, and various polymers and copolymer, polyethylene glycol, cyclodextrin, chitosan. The nanocarriers have been characterized by particle size, zeta potential, aptamer conjugation, and drug encapsulation efficiency. Hydrodynamic diameter and Zeta potential can used in order to monitor aptamers' crosslinking, in-vitro drug release, intracellular delivery of nanocarriers, and cellular cytotoxicity assay. Also, they are studied for cellular uptake and internalization to types of cancer cell lines such as colorectal, breast, prostate, leukemia and etc. The results are investigated in in-vivo cytotoxicity assay and cell viability assay. Targeted cancer therapy seems a good and promising strategy to overcome the systemic toxicity of chemotherapy.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy
    (AICHE Online Library, 2022) Ashrafizadeh, Milad; Hushmandi, Kiavash; Mirzaei, Sepideh; Bokaie, Saied; Bigham, Ashkan; Makvandi, Pooyan; Rabiee, Navid; Thakur, Vijay Kumar; Kumar, Alan Prem; Sharifi, Esmaeel; Varma, Rajender S.; Aref, Amir Reza; Wojnilowicz, Marcin; Zarrabi, Ali; Karimi-Maleh, Hassan; Voelcker, Nicolas H.; Mostafavi, Ebrahim; Orive, Gorka
    Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.
  • Küçük Resim Yok
    Öğe
    Customizing nano-chitosan for sustainable drug delivery
    (PMC, 2022) Mostafa Saeedi 1, Omid Vahidi 1, Mohammadreza Moghbeli 1, Sepideh Ahmadi 2, Mohsen Asadnia 3, Omid Akhavan 4, Farzad Seidi 5, Mohammad Rabiee 6, Mohammad Reza Saeb 7, Thomas J Webster 8, Rajender S Varma 9, Esmaeel Sharifi 10, Ali Zarrabi 11, Navid Rabiee 12 Affiliations collapse; Saeedi, Mostafa; Vahidi, Omid; Moghbeli, Mohammadreza; Ahmadi, Sepideh; Asadnia, Mohsen; Akhavan, Omid; Seidi, Farzad; Rabiee, Mohammad; Saeb, Mohammad Reza; Webster, Thomas J.; Zarrabi, Ali; Rabiee, Navid; Varma, Rajender S.; Sharifi, Esmaeel
    Chitosan is a natural polymer with acceptable biocompatibility, biodegradability, and mechanical stability; hence, it has been widely appraised for drug and gene delivery applications. However, there has been no comprehensive assessment to tailor-make chitosan cross-linkers of various types and functionalities as well as complex chitosan-based semi- and full-interpenetrating networks for drug delivery systems (DDSs). Herein, the various fabrication methods developed for chitosan hydrogels are deliberated, including chitosan crosslinking with and without diverse cross-linkers. Tripolyphosphate, genipin and multi-functional aldehydes, carboxylic acids, and epoxides are common cross-linkers used in developing biomedical chitosan for DDSs. Methods deployed for modifying the properties and performance of chitosan hydrogels, via their composite production (semi- and full-interpenetrating networks), are also cogitated here. In addition, recent advances in the fabrication of advanced chitosan hydrogels for drug delivery applications such as oral drug delivery, transdermal drug delivery, and cancer therapy are discussed. Lastly, thoughts on what is needed for the chitosan field to continue to grow is also debated in this comprehensive review article
  • Yükleniyor...
    Küçük Resim
    Öğe
    Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering
    (John Wiley and Sons Inc, 2022) Jalilinejad, Negin; Rabiee, Mohammad; Baheiraei, Nafiseh; Ghahremanzadeh, Ramin; Salarian, Reza; Rabiee, Navid; Akhavan, Omid; Zarrintaj, Payam; Hejna, Aleksander; Saeb, Mohammad Reza; Zarrabi, Ali; Sharifi, Esmaeel; Yousefiasl, Satar; Zare, Ehsan Nazarzadeh
    A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied. © 2022 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Gold nanorods for drug and gene delivery: an overview of recent advancements
    (2022) Jahangiri-Manesh, Atieh; Mousazadeh, Marziyeh; Taji, Shirinsadat; Bahmani, Abbas; Zarepour, Atefeh; Zarrabi, Ali; Sharifi, Esmaeel; Azimzadeh, Mostafa
    Over the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both NIR-responsive cargo delivery and photothermal/photodynamic therapies. In this review, a comprehensive insight into the properties, synthesis methods and toxicity of gold nanorods are overviewed first. For the main body of the review, the therapeutic applications of GNRs are provided in four main sections: (i) drug delivery, (ii) gene delivery, (iii) photothermal/photodynamic therapy, and (iv) theranostics applications. Finally, the challenges and future perspectives of their therapeutic application are discussed.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Magnetic nanocomposites for biomedical applications
    (Elsevier B.V., 2022) Naghdi, Mina; Ghovvati, Mahsa; Rabiee, Navid; Ahmadi, Sepideh; Abbariki, Nikzad; Sojdeh, Soheil; Ojaghi, Amirhossein; Bagherzadeh, Mojtaba; Akhavan, Omid; Sharifi, Esmaeel; Rabiee, Mohammad; Saeb, Mohammad Reza; Bolouri, Keivan; Webster, Thomas J.; Zare, Ehsan Nazarzadeh; Zarrabi, Ali
    Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Mesoporous bioactive glasses in cancer diagnosis and therapy: stimuli-responsive, toxicity, immunogenicity, and clinical translation
    (Wiley, 2021) Sharifi, Esmaeel; Bigham, Ashkan; Yousefiasl, Satar; Trovato Maria; Ghomi, Matineh; Zarrabi, Ali
    Cancer is one of the top life-threatening dangers to the human survival, accounting for over 10 million deaths per year. Bioactive glasses have developed dramatically since their discovery 50 years ago, with applications that include therapeutics as well as diagnostics. A new system within the bioactive glass family, mesoporous bioactive glasses (MBGs), has evolved into a multifunctional platform, thanks to MBGs easy-to-functionalize nature and tailorable textural properties-surface area, pore size, and pore volume. Although MBGs have yet to meet their potential in tumor treatment and imaging in practice, recently research has shed light on the distinguished MBGs capabilities as promising theranostic systems for cancer imaging and therapy. This review presents research progress in the field of MBG applications in cancer diagnosis and therapy, including synthesis of MBGs, mechanistic overview of MBGs application in tumor diagnosis and drug monitoring, applications of MBGs in cancer therapy ( particularly, targeted delivery and stimuli-responsive nanoplatforms), and immunological profile of MBG-based nanodevices in reference to the development of novel cancer therapeutics.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Micelle-engineered nanoplatforms for precision oncology
    (Elsevier science, 2024) Gao, Wei; Bigham, Ashkan; Ghomi, Matineh; Zarrabi, Ali; Rabiee, Navid; Saeb, Mohammad Reza; Ertaş, Yavuz Nuri; Goel, Arul; Sharifi, Esmaeel; Ashrafizadeh, Milad; Sethi, Gautam; Tambuwala, Murtaza M.; Wang, Yuzhuo; Ghaffarlou, Mohammadreza; Jiao, Taiwei
    The alliance between nanomaterials and cancer therapy has revolutionized the treatment of tumor patients. After cardiovascular diseases, cancer is the leading cause of death, so interdisciplinary approaches should be used for the treatment of this malignant disease. Both treatment and early diagnosis of cancer are challenging. The micelles belong to lipid-based nanostructures, and they have a hydrophobic core with hydrophilic head regions. The current review article focuses on the application of micelles in cancer suppression. The micelles can provide a platform for co-delivery of non-coding RNAs and RNAi in cancer gene therapy. Both synthetic and natural
  • Yükleniyor...
    Küçük Resim
    Öğe
    Molecular landscape of LncRNAs in prostate cancer: A focus on pathways and therapeutic targets for intervention
    (PMC, 2022) Mirzaei, Sepideh; Abad Paskeh, Mahshid Deldar; Okina, Elena; Gholami, Mohammad Hossein; Hushmandi, Kiavash; Hashemi, Mehrdad; Kalu , Azuma; Zarrabi, Ali; Nabav, Noushin; Rabiee, Navid; Sharifi, Esmaeel; Karimi-Maleh, Hassan; Ashrafizadeh, Milad; Kumar, Alan Prem; Wang, Yuzhuo
    Background: One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterog? enous and progressive natures. Genetic and epigenetic changes play signifcant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review: The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientifc concepts of review: The aberrant expression of lncRNAs in prostate cancer has been well-docu? mented and progression rate of tumor cells are regulated via afecting STAT3, NF-?B, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker
  • Yükleniyor...
    Küçük Resim
    Öğe
    Nanotechnological approaches in prostate cancer therapy: Integration of engineering and biology
    (Elsevier B.V., 2022) Ashrafizadeh, Milad; Aghamiri, Shahin; Tan, Shing Cheng; Zarrabi, Ali; Sharifi, Esmaeel
    Nanocarriers have received special attention in biomedicine for the treatment of various diseases, especially cancer, as one of the leading causes of death worldwide. Nanocarriers can improve the potential of contemporary strategies in cancer therapy and also provide new methods for diagnosis and biosensing. The present review focuses on the biomedical application of nanocarriers in the treatment of prostate cancer (PCa), one of the most common urological cancers in men. The chemotherapeutic and radiotherapeutic potentials in PCa may be improved using nanocarriers by providing targeted drug delivery and inducing PCa cells' sensitivity via induction of cell death. Delivery of nucleic acid drugs such as siRNA, shRNA and CRISPR/Cas9 system by nanocarriers in PCa therapy enhances the intracellular accumulation of these therapeutics and increases their efficacy in gene expression regulation. The high proliferation rate and metastasis of PCa cells result in poor prognosis. They may be dually suppressed by nanocarriers, as nanoplatforms facilitate co-delivery of drugs and gene therapeutics in PCa suppression. Selectivity toward PCa cells may be enhanced via surface modification of the nanocarriers to facilitate internalization via endocytosis. In addition to their applications for PCa treatment, nanocarriers mediate the detection of biomarkers for PCa diagnosis. © 2022 Elsevier Ltd
  • Küçük Resim Yok
    Öğe
    Recapitulating Antioxidant and Antibacterial Compounds into a Package for Tissue Regeneration: Dual Function Materials with Synergistic Effect
    (Wiley-V C H Verlag Gmbh, 2023) Shao, Minmin; Bigham, Ashkan; Yousefiasl, Satar; Yiu, Cynthia K. Y.; Girish, Yarabahally R.; Ghomi, Matineh; Sharifi, Esmaeel
    Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.
  • Küçük Resim Yok
    Öğe
    Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches
    (Elsevier, 2022) Ashrafizadeh, Milad; Delfi, Masoud; Zarrabi, Ali; Sharifi, Esmaeel; Rabiee, Navid; Paiva-Santos, Ana Cláudia; Kumar, Alan Prem; Hushmandi, Kiavash; Nazarzadeh Zare, Ehsan; Makvandi, Pooyan
    The site-specific delivery of antitumor agents is of importance for providing effective cancer suppression. Poor bioavailability of anticancer compounds and the presence of biological barriers prevent their accumulation in tumor sites. These obstacles can be overcome using liposomal nanostructures. The challenges in cancer chemotherapy and stimuli-responsive nanocarriers are first described in the current review. Then, stimuli-responsive liposomes including pH-, redox-, enzyme-, light-, thermo- and magneto-sensitive nanoparticles are discussed and their potential for delivery of anticancer drugs is emphasized. The pH- or redox-sensitive liposomes are based on internal stimulus and release drug in response to a mildly acidic pH and GSH, respectively. The pH-sensitive liposomes can mediate endosomal escape via proton sponge. The multifunctional liposomes responsive to both redox and pH have more capacity in drug release at tumor site compared to pH- or redox-sensitive alone. The magnetic field and NIR irradiation can be exploited for external stimulation of liposomes. The light-responsive liposomes release drugs when they are exposed to irradiation; thermosensitive-liposomes release drugs at a temperature of >40 °C when there is hyperthermia; magneto-responsive liposomes release drugs in presence of magnetic field. These smart nanoliposomes also mediate co-delivery of drugs and genes in synergistic cancer therapy. Due to lack of long-term toxicity of liposomes, they can be utilized in near future for treatment of cancer patients.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim