Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sedaghatfar, O." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Generalized Differentiability of Fuzzy-Valued Convex Functions and Applications
    (Springer Science and Business Media Deutschland GmbH, 2023) Allahviranloo, T.; Baloochshahryari, M.R.; Sedaghatfar, O.
    In this paper, the concept of generalized differentiability and level-wise generalized Hukuhara differentiability are extended for one-dimensional fuzzy-valued convex functions from R into E. In addition, the properties of generalized differentiability and characterization for fuzzy-valued convex functions in terms of generalized differentiability and the fundamental theorem of calculus generalized differential and fuzzy integral are presented in detail. Moreover, the concepts of generalized subgradient and generalized subdifferential in terms of level-wise generalized Hukuhara differentiability are extended for fuzzy-valued convex functions. Finally, by using their properties, the convex fuzzy optimization for the one-dimensional fuzzy-valued convex functions is discussed. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
  • Küçük Resim Yok
    Öğe
    The Investigation of Some Essential Concepts of Extended Fuzzy-Valued Convex Functions and Their Applications
    (Hindawi Ltd, 2024) Allahviranloo, T.; Shahryari, M. R. Balooch; Sedaghatfar, O.; Shahriari, M. R.; Saadati, R.; Noeiaghdam, S.; Fernandez-Gamiz, U.
    In this paper, we are thus motivated to define and introduce the extended fuzzy-valued convex functions that can take the singleton fuzzy values -infinity similar to and +infinity similar to at some points. Such functions can be characterized using the notions of effective domain and epigraph. In this way, we study important concepts such as fuzzy indicator function and fuzzy infimal convolution for extended fuzzy-valued functions. Finally, we introduce the concept of directional generalized derivative for extended above functions and its properties. Eventually, we give a practical example that will illustrate well the directional g-derivative for the extended fuzzy-valued convex function.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim