Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Saeidi, T." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A comprehensive review of recent methods for compactness and performance enhancement in 5G and 6G wearable antennas
    (Elsevier B.V., 2024) Saleh, S.; Saeidi, T.; Timmons, N.; Razzaz, F.
    Wearable antennas are important in many areas of our lives, including the Internet of Things (IoT), health care, sports, the automobile industry, security, and entertainment. Wearable antennas should be designed with a compact size in order to be readily integrated and conform to the body shape, as well as a high performance to withstand mechanical and environmental changes. 5 G and 6 G technologies offer sufficient solutions for wearable antennas utilized for wireless body area networks (WBANs) and IoT applications in terms of high reliability, high gain, compactness, low cost, and high performance. In this work, we present for the first time a comprehnsive review of 5 G and 6 G wearable antennas discussing their significance, types, applications, and design issues in detail. A state-of-the-art for the recent 5 G wearable antenna reviews is also outlined. The main contribution of this work is explaining the compactness and performance enhancement methods at both bands in ascending order starting from low frequency, sub 6 GHz, 5 G mmWave, up to 6 G (high mmWavw and THz wave), so the reader will differentiate between the antennas’ design requirements and challenges for different bands easily. The impacts of flexibility, bending, and on-body/off-body on antenna performance as well as specific absorption rate (SAR) calculation are also taken into account. This review can be considered a valuable tool for designers and researchers in designing many types of wearable antennas at 5 G and 6 G frequency bands for various applications by understanding the antenna's design problems, topologies, and types of substrate and conductive materials. © 2024 The Authors
  • Küçük Resim Yok
    Öğe
    Study of Substrate-Materials Impact on Compact Antenna Performance
    (Institute of Electrical and Electronics Engineers Inc., 2022) Mahmood, S.N.; Saeidi, T.; Ismael, A.R.; Alani, S.
    Improving bandwidth and reducing size are significant design aspects for practical compact antenna applications. To reach wideband and decrease the scale of microstrip antennas, numerous strategies were brought into practical action. This article demonstrates a survey of various miniaturization strategies. It analyzes the effectiveness of the compact and miniaturized multi-use antennas in terms of their size, forms of substrate material, conductivity, loss tangent, and thickness that can influence the bandwidth, gain, radiation efficiency, Specific absorption rate (SAR) value antenna type, feeding techniques, and further significant parameters. Noteworthy, the most popular technique is to use a high dielectric constant for its substratum content to reduce the size of a printed antenna. Thus, the directed wavelength under the patch and the resonant patch size can be decreased correspondingly. © 2022 IEEE.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim