Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Orouei, Sima" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy
    (2022) Deldar Abad Paskeh, Mahshid; Saebfar, Hamidreza; Mahabady, Mahmood Khaksary; Orouei, Sima; Hushmandi, Kiavash; Zarrabi, Ali
    Gene therapy can be used as a cancer therapy by affecting signaling networks participating in the aggressive behavior of tumors. Small interfering RNA (siRNA) is a genetic tool employed for gene silencing. The siRNA molecules have a length of 21-22 nucleotides, and are synthetic, short non-coding RNAs. The siRNA molecule should be loaded into the RISC complex to carry out its function to degrade mRNA and reduce protein expression. By targeting oncogenic pathways, siRNA can also promote chemosensitivity and reduce resistance. Doxorubicin (DOX) is an anthracycline family member capable of triggering cell cycle arrest via binding to topoisomerase II and inhibiting DNA replication. The present review focuses on the design of siRNA for increasing DOX sensitivity and overcoming resistance. Molecular pathways such as STAT3, Notch1, Mcl-1 and Nrf2 can be down-regulated by siRNA to promote DOX sensitivity. Furthermore, siRNA can be used to suppress the activity of P-glycoprotein as a cell membrane transporter of drugs, leading to enhanced accumulation of DOX. The co-delivery of DOX and siRNA both incorporated into nanoparticles can increase the intracellular accumulation in cancer cells, and protect siRNA against degradation by enzymes. Furthermore, the circulation time of DOX is lengthened to boost cytotoxicity against cancer cells. The surface modification of nanocarriers with ligands such as RGD or folate increases their selectivity towards cancer cells. Moreover, smart nanostructures, including pH-, redox- and light-responsive are optimized for siRNA and DOX delivery and tumor treatment.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting
    (Elsevier Inc., 2022) Sadrkhanloo, Mehrdokht; Entezari, Maliheh; Orouei, Sima; Zabolian, Amirhossein; Mirzaie, Amirreza; Maghsoudloo, Amin; Raesi, Rasoul; Asadi, Neda; Hashemi, Mehrdad; Zarrabi, Ali; Khan, Haroon; Mirzaei, Sepideh; Samarghandian, Saeed
    The nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of redox balance and it responds to various cell stresses that oxidative stress is the most well-known one. The Nrf2 should undergo nuclear translocation to exert its protective impacts and decrease ROS production. On the other hand, ischemic/reperfusion (I/R) injury is a pathological event resulting from low blood flow to an organ and followed by reperfusion. The I/R induces cell injury and organ dysfunction. The present review focuses on Nrf2 function in alleviation of I/R injury. Stimulating of Nrf2 signaling ameliorates I/R injury in various organs including lung, liver, brain, testis and heart. The Nrf2 enhances activity of antioxidant enzymes to reduce ROS production and prevent oxidative stress-mediated cell death. Besides, Nrf2 reduces inflammation via decreasing levels of pro-inflammatory factors including IL-6, IL-1? and TNF-?. Nrf2 signaling is beneficial in preventing apoptosis and increasing cell viability. Nrf2 induces autophagy to prevent apoptosis during I/R injury. Furthermore, it can interact with other molecular pathways including PI3K/Akt, NF-?B, miRNAs, lncRNAs and GSK-3? among others, to ameliorate I/R injury. The therapeutic agents, most of them are phytochemicals such as resveratrol, berberine and curcumin, induce Nrf2 signaling in I/R injury alleviation. © 2022

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim