Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Mazhar, Farid Najd" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Machine learning and experimental analyses identified miRNA expression models associated with metastatic osteosarcoma
    (Elsevier, 2024) Abedi, Samira; Behmanesh, Ali; Mazhar, Farid Najd; Bagherifard, Abolfazl; Sami, Sam Hajialiloo; Heidari, Negar; Hossein-Khannazer, Nikoo; Namazifard, Saina; Arki, Mandana Kazem; Shams, Roshanak; Zarrabi, Ali; Vosough, Massoud
    Osteosarcoma (OS), as the most common primary bone cancer, has a high invasiveness and metastatic potential, therefore, it has a poor prognosis. This study identified early diagnostic biomarkers using miRNA expression profiles associated with osteosarcoma metastasis. In the first step, we used RNA-seq and online microarray data from osteosarcoma tissues and cell lines to identify differentially expressed miRNAs. Then, using seven feature selection algorithms for ranking, the first-ranked miRNAs were selected as input for five machine learning systems. Using network analysis and machine learning algorithms, we developed new diagnostic models that successfully differentiated metastatic osteosarcoma from non-metastatic samples based on newly discovered miRNA signatures. The results showed that miR-34c-3p and miR-154-3p act as the most promising models in the diagnosis of metastatic osteosarcoma. Validation for this model by RT-qPCR in benign tissue and osteosarcoma biopsies confirmed the lower expression of miR-34c-3p and miR-154-3p in OS samples. In addition, a direct correlation between miR-34c-3p expression, miR-154-3p expression and tumor grade was discovered. The combined values of miR-34c-3p and miR-154-3p showed 90 % diagnostic power (AUC = 0.90) for osteosarcoma samples and 85 % (AUC = 0.85) for metastatic osteosarcoma. Adhesion junction and focal adhesion pathways, as well as epithelial-to-mesenchymal transition (EMT) GO terms, were identified as the most significant KEGG and GO terms for the top miRNAs. The findings of this study highlight the potential use of novel miRNA expression signatures for early detection of metastatic osteosarcoma. These findings may help in determining therapeutic approaches with a quantitative and faster method of metastasis detection and also be used in the development of targeted molecular therapy for this aggressive cancer. Further research is needed to confirm the clinical utility of miR-34c-3p and miR-154-3p as diagnostic biomarkers for metastatic osteosarcoma.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim