Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Liu, Zhong" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A Vertical Federated Multi-View Fuzzy Clustering Method for Incomplete Data
    (Institute of Electrical and Electronics Engineers Inc., 2025) Li, Yan; Hu, Xingchen; Yu, Shengju; Ding, Weiping; Pedrycz, Witold; Kiat, Yeo Chai; Liu, Zhong
    Multi-view fuzzy clustering (MVFC) has gained widespread adoption owing to its inherent flexibility in handling ambiguous data. The proliferation of privatization devices has driven the emergence of new challenge in MVFC researches. Federated learning, a technique that can jointly train without directly using raw data, has gain significant attention in decentralized MVFC. However, their applicability depends on the assumptions of data integrity and independence between different views. In fact, while within distributed environments, data typically exhibits two challenging problems: (1) multiple views within a single client; (2) incomplete data. Existing methods exhibit limitations in effectively addressing these challenges. Hence, in this study, we aim at achieving the effective clustering for incomplete data by a novel vertical federated MVFC framework. Specifically, a unified clustering framework is designed to capture both local client learning and global server training. For the local client learning, the data reconstruction strategy and prototype alignment strategy are introduced to ensure the preservation of data structure and refinement of clustering relationships, which mitigates the impact of incomplete data. Meanwhile, the global training process implements aggregation based on client-specific information. The whole process is realized based on the unified fuzzy clustering framework, promoting collaborative learning between client-specific and server information. Theoretical analyses and extensive experiments are carefully conducted to validate the effectiveness and efficiency of the proposed method from multiple perspectives. © 1993-2012 IEEE.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim