Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Le, Duc Trong Nguyen" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Eco-friendly perspective of hydrogen fuel addition to diesel engine: An inclusive review of low-temperature combustion concepts
    (Elsevier Ltd, 2024) Nguyen, Van Nhanh; Ganesan, Nataraj; Ashok, Bragadeshwaran; Balasubramanian, Dhinesh; Anabayan K.; Lawrence, Krupakaran Radhakrishnan; Tamilvanan A.; Le, Duc Trong Nguyen; Truong, Thanh Hai; Tran, Viet Dung; Cao, Dao Nam; JS, Femilda Josephin; Varuvel, Edwin Geo
    Hydrogen is a probable alternative fuel for both stationary and automotive engine applications due to its properties like high energy content and persistent availability. However, using hydrogen only as a fuel for engines was almost impossible; thus, hydrogen co-combusting with diesel and several biomass-based biofuels will be advisable. As viscosity plays a significant role in combustion, the application of biodiesel was classified as high viscous fuel and low viscous fuel for investigation with hydrogen in compression ignition engines. The present study aims to reconnoitre the prospects of using hydrogen-enriched diesel-biodiesel blends with advanced combustion technology. The present work also examines advanced combustion technologies, including reactivity-controlled compression ignition (RCCI), homogenous charge compression ignition (HCCI), and laser ignition technology. This review shed light on the properties of hydrogen-enriched biodiesel blends, engine operating parameters, and their impact on engine characteristics. This comprehensive review offered a distinct view to the academics for improving the performance, combustion, and emission characteristics of CI engines fuelled with hydrogen-enriched biodiesel-diesel. Further, the review progressed with the aforesaid operating conditions and advanced combustion technology. © 2024 Hydrogen Energy Publications LLC
  • Yükleniyor...
    Küçük Resim
    Öğe
    Eco-friendly perspective of hydrogen fuel addition to diesel engine: An inclusive review of low-temperature combustion concepts
    (Elsevier ltd, 2025) Nguyen, Van Nhanh; Ganesan, Nataraj; Ashok, Bragadeshwaran; Balasubramanian, Dhinesh; Anabayan, K.; Lawrence, Krupakaran Radhakrishnan; Tamilvanan, A.; Le, Duc Trong Nguyen; Truong, Thanh Hai; Tran, Viet Dung; Cao, Dao Nam; Bai, Femilda Josephin Joseph Shobana
    Hydrogen is a probable alternative fuel for both stationary and automotive engine applications due to its properties like high energy content and persistent availability. However, using hydrogen only as a fuel for engines was almost impossible; thus, hydrogen co-combusting with diesel and several biomass-based biofuels will be advisable. As viscosity plays a significant role in combustion, the application of biodiesel was classified as high viscous fuel and low viscous fuel for investigation with hydrogen in compression ignition engines. The present study aims to reconnoitre the prospects of using hydrogen-enriched diesel-biodiesel blends with advanced combustion technology. The present work also examines advanced combustion technologies, including reactivity-controlled compression ignition (RCCI), homogenous charge compression ignition (HCCI), and laser ignition technology. This review shed light on the properties of hydrogen-enriched biodiesel blends, engine operating parameters, and their impact on engine characteristics. This comprehensive review offered a distinct view to the academics for improving the performance, combustion, and emission characteristics of CI engines fuelled with hydrogen-enriched biodiesel-diesel. Further, the review progressed with the aforesaid operating conditions and advanced combustion technology.
  • Küçük Resim Yok
    Öğe
    Engine behavior analysis on a conventional diesel engine combustion mode powered by low viscous cedarwood oil/waste cooking oil biodiesel/diesel fuel mixture - An experimental study
    (Elsevier, 2024) Nguyen, Van Nhanh; Balasubramanian, Dhinesh; Rajarajan, Amudhan; Venugopal, Inbanaathan Papla; Dineshkumar, C.; Ravikumar, R.; Le, Duc Trong Nguyen
    Binary biofuel is the best alternative source that completely replaces petroleum -based fuel. In this study, we have experimented with the waste cooking oil and cedarwood oil as biofuel in a DI CI engine for various proportions and related its combustion, emission, and performance characteristics to those of base diesel. This study aims to eliminate the utilization of fossil fuel in a diesel engine by introducing green binary fuel (low viscous fuel resulting from the blending of cedarwood oil with WCO biodiesel) successfully. The objective of the study is to convert cedarwood - WCO into green binary fuel and investigate its performance, emission, and combustion properties. The transesterification process is utilized for the enhancement of WCO as biodiesel. It occasioned a reduction in brake thermal efficiency as the addition of waste cooking oil in the blend increased. At the same time, the maximum value of BTE of 27.8% was attained for B10C90 (10% transesterified waste cooking oil and 90% cedarwood oil in volume), whereas it was 28.1% for diesel at maximum load conditions. The BSEC was 15.4 MJ/kW-hr for B10C90 and 12.8 MJ/kWhr for diesel. The emission characteristics, CO, HC, NOx, CO2, and smoke for B10C90 were 17.93 g/kWhr, 0.55 g/kWhr., 20.09 g/kWhr, 2210.9 g/kWhr, and 25.55%. Combustion features such as NHRR, burn duration, MPRR, combustion efficiency, Ignition delay, and coefficient of variance for B10C90 were 53.74 bar, 29.38 CAD, 4.71 bar/CAD, 99.7%, 7.01 CAD, and 4.73% respectively. It showed that B10C90 had comparable performance (BTE) and combustion values to mineral diesel with better emission characteristics.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim