Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Khosravi, Arezoo" seçeneğine göre listele

Listeleniyor 1 - 20 / 27
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Advances in phototheranostic agents: From imaging to targeted therapy
    (Elsevier Ltd., 2025) Samadzadeh, Meisam; Khosravi, Arezoo; Zarepour, Atefeh; Noei, Hadi; Sivakumar, Ponnurengam Malliappan; Iravani, Siavash; Zarrabi, Ali
    The recent evolution of phototheranostic agents represents a groundbreaking intersection of diagnostic imaging and targeted therapy, particularly in oncology. This review aims to elucidate the recent advances in phototheranostic agents, highlighting their dual functionality in imaging and targeted therapy. Despite significant progress, several challenges persist, including the optimization of agent specificity, light penetration in tissues, and the potential for off-target effects. The variability in tumor microenvironments presents a significant obstacle, complicating the development of universal phototheranostic agents. Moreover, concerns regarding the long-term stability, potential toxicity, and biocompatibility of these agents necessitate thorough evaluation and optimization. Notably, the complexity of designing nanoparticles that can effectively deliver both imaging and therapeutic modalities poses additional hurdles. Future perspectives in this field emphasize the need for innovative strategies to enhance agent stability, biocompatibility, and targeted delivery. Furthermore, ongoing research focuses on the development of novel light-based techniques and the exploration of combination therapies to improve treatment efficacy. By addressing these challenges, the potential of phototheranostic agents to transform personalized cancer therapy becomes increasingly promising. This review serves as a comprehensive overview of the current landscape, challenges, and future directions in phototheranostic research, ultimately aiming to inform and inspire further investigation in this dynamic field. © 2025 Elsevier Ltd
  • Küçük Resim Yok
    Öğe
    Advancing personalized medicine: Integrating statistical algorithms with omics and nano-omics for enhanced diagnostic accuracy and treatment efficacy
    (Elsevier, 2024) Coşkun, Abdurrahman; Ertaylan, Gökhan; Pusparum, Murih; Van Hoof, Rebekka; Kaya, Zelal Zuhal; Khosravi, Arezoo; Zarrabi, Ali
    Medical laboratory services enable precise measurement of thousands of biomolecules and have become an inseparable part of high-quality healthcare services, exerting a profound influence on global health outcomes. The integration of omics technologies into laboratory medicine has transformed healthcare, enabling personalized treatments and interventions based on individuals' distinct genetic and metabolic profiles. Interpreting laboratory data relies on reliable reference values. Presently, population-derived references are used for individuals, risking misinterpretation due to population heterogeneity, and leading to medical errors. Thus, personalized references are crucial for precise interpretation of individual laboratory results, and the interpretation of omics data should be based on individualized reference values. We reviewed recent advancements in personalized laboratory medicine, focusing on personalized omics, and discussed strategies for implementing personalized statistical approaches in omics technologies to improve global health and concluded that personalized statistical algorithms for interpretation of omics data have great potential to enhance global health. Finally, we demonstrated that the convergence of nanotechnology and omics sciences is transforming personalized laboratory medicine by providing unparalleled diagnostic precision and innovative therapeutic strategies.
  • Küçük Resim Yok
    Öğe
    Ambient pressure dried graphene oxide-silica composite aerogels as pharmaceutical nanocarriers
    (Springer, 2025) Salihi, Elif Çalışkan; Zarrabi, Ali; Zarepour, Atefeh; Gürboğa, Merve; Hasan Niari Niar, Shalaleh; Özakpınar, Özlem Bingöl; Wang, Jiabin; Daştan, Havva; Khosravi, Arezoo; Šiller, Lidija
    Research on the production of graphene, its derivatives and composites has been enhanced in the past two decades. Graphene is well known for its exceptional physicochemical properties including extensive surface area, good biocompatibility, high loading capacity, and functionalization capability which make it an ideal candidate for drug delivery systems. When compared to the other nanomaterials, aerogels are relatively new materials characterized by their unparalleled porosities and extensive surface areas. The ability to carry drugs is crucial in drug delivery systems, and the large surface area of graphene coupled with the high porosity of aerogels presents a significant potential for use in this domain. In this study, graphene oxide-silica composite aerogel nanostructures were synthesized firstly, using the sol-gel method and ambient pressure drying technique which offer advantages in terms of both time and cost efficiency. Then, the formulation was also fabricated in the functionalized forms with sodium dodecyl sulfate, polyvinylpyrrolidone and ethylenediaminetetraacetic acid. Different physicochemical characteristics of these new materials were investigated using SEM/EDS, XRD, Raman spectroscopy, FTIR spectroscopy, TGA and DLS techniques. Drug loading tests were done using curcumin and methylene blue, while the biocompatibility of the nanocarriers was assessed through cell viability assay. Results of different tests confirmed the successful fabrication of the aerogels with different functionalizations, which had encapsulation capacity ranged between 20–90% and high biocompatibility after exposing with cells. Based on these promising results, this study confirms that aerogel-based platforms produced have potential to be used as nanocarriers for drug delivery systems. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
  • Küçük Resim Yok
    Öğe
    Amine-functionalized mesoporous silica nanoparticles decorated by silver nanoparticles for delivery of doxorubicin in breast and cervical cancer cells
    (Elsevier, 2024) Ghobadi, Melika; Salehi, Saeideh; Ardestani, Mohammad Taha Salmanifard; Mousavi-Khattat, Mohammad; Shakeran, Zahra; Khosravi, Arezoo; Cordani, Marco; Zarrabi, Ali
    Nanocarriers have demonstrated promising potential in the delivery of various anticancer drugs and in improving the efficiency of the treatment. In this study, silver nanoparticles (AgNPs) were green-synthesized using the extracts of different parts of the pomegranate plant, including the peel, flower petals, and calyx. To obtain the most efficient extract used for the green synthesis of AgNPs, all three types of synthesized nanoparticles were characterized. Then, (3-Aminopropyl) triethoxysilane-functionalized mesoporous silica nanoparticles (MSNs-APTES) decorated with AgNPs were fabricated via a one-pot green-synthesis method. AgNPs were directly coated on the surface of MSNs-APTES by adding pomegranate extract enriched with a source of reducing agent leading to converting the silver ion to AgNPs. The MSN-APTES-AgNPs (MSNs-AgNPs) have been thoroughly characterized using nanoparticle characterization techniques. In addition, DNA cleavage and hemolysis activities of the synthesized nanoparticles were analyzed, confirming the biocompatibility of synthesized nanoparticles. The Doxorubicin (DOX, as a breast/cervical anti-cancer drug) loading (42.8%) and release profiles were investigated via UV-visible spectroscopy. The fibroblast, breast cancer, and cervical cancer cells' viability against DOX-loaded nanoparticles were also studied. The results of this high drug loading, uniform shape, and small functionalized nanoparticles demonstrated its great potential for breast and cervical cancer management.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance
    (Elsevier b.v., 2025) Sivakumar, Ponnurengam Malliappan; Zarepour, Atefeh; Akhter, Sohail; Perumal, Govindaraj; Khosravi, Arezoo; Balasekar, Premkumar; Zarrabi, Ali
    Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity. This review underscores the significance of anionic polysaccharides as essential components of the evolving landscape of cancer therapy and theranostics. These polymers can be tailored to carry a wide range of therapeutic cargo, including chemotherapeutic agents, nucleic acids, and imaging agents. Their negative charge enables electrostatic interactions with positively charged drugs and facilitates the formation of stable nanoparticles, liposomes, or hydrogels for controlled drug release. Additionally, their hydrophilic nature aids in prolonging circulation time, reducing drug degradation, and minimizing off-target effects. Besides, some of them could act as targeting agents or therapeutic compounds that lead to improved therapeutic performance. This review offers valuable information for researchers, clinicians, and biomedical engineers. It provides insights into the recent progress in the applications of anionic polysaccharide-based delivery platforms in cancer theranostics to transform patient outcomes.
  • Küçük Resim Yok
    Öğe
    Application of 3D, 4D, 5D, and 6D bioprinting in cancer research: what does the future look like?
    (Royal Soc Chemistry, 2024) Khorsandi, Danial; Rezayat, Dorsa; Sezen, Serap; Ferrao, Rafaela; Khosravi, Arezoo; Zarepour, Atefeh; Khorsandi, Melika
    The application of three- and four-dimensional (3D/4D) printing in cancer research represents a significant advancement in understanding and addressing the complexities of cancer biology. 3D/4D materials provide more physiologically relevant environments compared to traditional two-dimensional models, allowing for a more accurate representation of the tumor microenvironment that enables researchers to study tumor progression, drug responses, and interactions with surrounding tissues under conditions similar to in vivo conditions. The dynamic nature of 4D materials introduces the element of time, allowing for the observation of temporal changes in cancer behavior and response to therapeutic interventions. The use of 3D/4D printing in cancer research holds great promise for advancing our understanding of the disease and improving the translation of preclinical findings to clinical applications. Accordingly, this review aims to briefly discuss 3D and 4D printing and their advantages and limitations in the field of cancer. Moreover, new techniques such as 5D/6D printing and artificial intelligence (AI) are also introduced as methods that could be used to overcome the limitations of 3D/4D printing and opened promising ways for the fast and precise diagnosis and treatment of cancer. Recent advancements pertaining to the application of 3D, 4D, 5D, and 6D bioprinting in cancer research are discussed, focusing on important challenges and future perspectives.
  • Küçük Resim Yok
    Öğe
    Bacterial nanocelluloses as sustainable biomaterials for advanced wound healing and dressings
    (Royal Society of Chemistry, 2024) Zarepour, Atefeh; Gök, Bahar; Budama Kılınç, Yasemin; Khosravi, Arezoo; Iravani, Siavash; Zarrabi, Ali
    Wound healing remains a significant clinical challenge, calling for innovative approaches to expedite the recovery process and improve patient outcomes. Bacterial nanocelluloses (BNCs) have emerged as a promising solution in the field of wound healing and dressings due to their unique properties such as high crystallinity, mechanical strength, high purity, porosity, high water absorption capacity, biodegradability, biocompatibility, sustainability, and flexibility. BNC-based materials can be applied for the treatment of different types of wounds, from second-degree burns to skin tears, biopsy sites, and diabetic and ischemic wounds. BNC-based dressings have exceptional mechanical properties such as flexibility and strength, which ensure proper wound coverage and protection. The renewable nature, eco-friendly production process, longer lifespan, and potential for biodegradability of BNCs make them a more sustainable alternative to conventional wound care materials. This review aims to provide a detailed overview on the application of BNC-based composites for wound healing and dressings via highlighting their ability as a carrier for delivery of different types of antimicrobial compounds as well as their direct effect on the healing process. Besides, it mentions some of the in vivo and clinical studies using BNC-based dressings and describes challenges related to the application of these materials as well as their future directions. © 2024 The Royal Society of Chemistry.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Biohybrid Micro/Nanorobots: Pioneering the Next Generation of Medical Technology
    (John Wiley and Sons Inc, 2024) Zarepour, Atefeh; Khosravi, Arezoo; Iravani, Siavash; Zarrabi, Ali
    Biohybrid micro/nanorobots hold a great potential for advancing biomedical research. These tiny structures, designed to mimic biological organisms, offer a promising method for targeted drug delivery, tissue engineering, biosensing/imaging, and cancer therapy, among other applications. The integration of biology and robotics opens new possibilities for minimally invasive surgeries and personalized healthcare solutions. The key challenges in the development of biohybrid micro/nanorobots include ensuring biocompatibility, addressing manufacturing scalability, enhancing navigation and localization capabilities, maintaining stability in dynamic biological environments, navigating regulatory hurdles, and successfully translating these innovative technologies into clinical applications. Herein, the recent advancements, challenges, and future perspectives related to the biomedical applications of biohybrid micro/nanorobots are described. Indeed, this review sheds light on the cutting-edge developments in this field, providing researchers with an updated overview of the current potential of biohybrid micro/nanorobots in the realm of biomedical applications, and offering insights into their practical applications. Furthermore, it delves into recent advancements in the field of biohybrid micro/nanorobotics, providing a comprehensive analysis of the current state-of-the-art technologies and their future applications in the biomedical field. © 2024 The Author(s). Advanced Healthcare Materials published by Wiley-VCH GmbH.
  • Küçük Resim Yok
    Öğe
    Bioinspired Nanomaterials to Combat Microbial Biofilm and Pathogen Challenges: A Review
    (American Chemical Society, 2024) Zarepour, Atefeh; Venkateswaran, Meenakshi R.; Khosravi, Arezoo; Iravani, Siavash; Zarrabi, Ali
    The emergence of antibiotic-resistant biofilms poses a significant challenge in healthcare, as these complex microbial communities demonstrate an increased resistance to conventional treatment methods. Traditional antibiotics often fail against biofilms, resulting in persistent infections and treatment failures. To address this urgent issue, innovative strategies such as bioinspired nanomaterials, antimicrobial peptides, quorum sensing inhibitors, and combination therapies show promise in disrupting biofilm structures, enhancing antimicrobial activity, and overcoming resistance mechanisms. Bioinspired nanomaterials have emerged as a pivotal approach for tackling the challenges presented by biofilms and microbial pathogens across various sectors, including healthcare, industry, and environmental protection. Their advantages include enhanced biocompatibility, targeted delivery, and improved efficacy against biofilm formation and microbial threats. Recent advancements highlight the potential of innovative solutions, such as antimicrobial nanoparticles, smart nanocarriers, surface modifications, and nanozymes, in combating biofilm-related issues. Despite significant progress in bioinspired nanomaterial research, challenges remain. The intricate interactions within biofilms and the evolving nature of microbial pathogens necessitate multidisciplinary approaches. Furthermore, translating laboratory findings into practical applications faces obstacles related to scalability, stability, and regulatory compliance. Future advancements in bioinspired nanomaterials are expected to focus on multifunctional nanoparticles that disrupt biofilms, advanced surface modifications for better interaction, smart nanocarriers for targeted delivery, and innovative nanozymes to dismantle biofilm structures. This review focuses on the development and application of bioinspired nanoparticles to address microbial biofilm and pathogen challenges. It emphasizes the roles of antimicrobial nanoparticles, surface modifications, smart nanocarriers, and nanozymes in enhancing the efficacy and targeting capabilities. Additionally, the review explores the potential of bioinspired nanomaterials in formulating biofilm management practices, providing insights into the advantages, limitations, and future perspectives of these innovative approaches. © 2024 American Chemical Society.
  • Küçük Resim Yok
    Öğe
    Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection
    (Royal soc chemistry, 2024) Fathi-karkan, Sonia; Sargazi, Saman; Shojaei, Shirin; Farasati Far, Bahareh; Mirinejad, Shekoufeh; Cordani, Marco; Khosravi, Arezoo; Zarrabi, Ali; Ghavami, Saeid
    Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools. Biotin-functionalized nanoparticles enhance cancer detection by targeting biotin receptors, which are overexpressed on cancer cells. This targeted approach improves imaging accuracy and efficacy in identifying cancerous tissues.
  • Yükleniyor...
    Küçük Resim
    Öğe
    c-FLIP/Ku70 complex; A potential molecular target for apoptosis induction in hepatocellular carcinoma
    (Academic press inc., 2025) Haghir-Sharif-Zamini, Yasamin; Khosravi, Arezoo; Hassan, Moustapha; Zarrabi, Ali; Vosough, Massoud
    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide and the most common form of liver cancer. Despite global efforts toward early diagnosis and effective treatments, HCC is often diagnosed at advanced stages, where conventional therapies frequently lead to resistance and/or high recurrence rates. Therefore, novel biomarkers and promising medications are urgently required. Epi-drugs, or epigenetic-based medicines, have recently emerged as a promising therapeutic modality. Since the epigenome of the cancer cells is always dysregulated and this is followed by apoptosis-resistance, reprogramming the epigenome of cancer cells by epi-drugs (such as HDAC inhibitors (HDACis), and DNMT inhibitors (DNMTis)) could be an alternative approach to use in concert with established treatment protocols. C-FLIP, an anti-apoptotic protein, and Ku70, a member of the DNA repair system, bind together and make a cytoplasmic complex in certain cancers and induce resistance to apoptosis. Many epi-drugs, such as HDACis, can dissociate this complex through Ku70 acetylation and activate cellular apoptosis. The novel compounds for dissociating this complex could provide an innovative insight into molecular targeted HCC treatments. In this review, we address the innovative therapeutic potential of targeting c-FLIP/Ku70 complex by epi-drugs, particularly HDACis, to overcome apoptosis resistance of HCC cells. This review will cover the mechanisms by which the c-FLIP/Ku70 complex facilitates cancer cell survival, the impact of epigenetic alterations on the complex dissociation, and highlight HDACis potential in combination therapies, biomarker developments and mechanistic overviews. This review highlights c-FLIP ubiquitination and Ku70 acetylation levels as diagnostic and prognostic tools in HCC management.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Carbon-based nanozymes for cancer therapy and diagnosis: a review
    (Elsevier b.v., 2025) Cordani, Marco; Fernández-Lucas, Jesús; Khosravi, Arezoo; Zare, Ehsan Nazarzadeh; Makvandi, Pooyan; Zarrabi, Ali; Iravani, Siavash
    Carbon-based nanozymes (CNs) have emerged as a significant innovation in targeted cancer therapy, demonstrating great potential for advancing cancer diagnosis and treatment. With exceptional catalytic properties, remarkable biocompatibility, and the ability to precisely target cancer cells, CNs provide a promising avenue for the development of novel oncological therapies. By functionalizing their surfaces with targeting ligands, such as antibodies or peptides, CNs can specifically recognize and bind to cancer cells. This targeted approach ensures that therapeutic agents are delivered directly to the tumor site, minimizing off-target effects, and reducing systemic toxicity. Additionally, the enzyme-like activities of CNs, when combined with conventional therapies such as chemotherapeutics, photothermal therapy, and photodynamic therapy, or other modalities can enhance therapeutic outcomes. Integrating CNs into clinical practice could significantly improve therapeutic efficacy, reduce probable side effects, enhance patient outcomes, and drive a shift towards more personalized cancer care. Besides, CNs can also be employed in biosensors and diagnostic nanomaterials, enabling rapid, selective, and highly accurate detection of specific biomarkers. Their versatile functionalities open new avenues for refining imaging techniques, ultimately contributing to early diagnosis and better clinical decision-making. This review consolidates recent studies exploring CNs in cancer targeting, highlighting both their diagnostic and therapeutic potential in oncology.
  • Küçük Resim Yok
    Öğe
    Carboxymethyl cellulose/sodium alginate hydrogel with anti-inflammatory capabilities for accelerated wound healing; In vitro and in vivo study
    (Elsevier, 2024) Hosseini, Seyed Mohammad Reza; Heydari, Parisa; Namnabat, Mahtab; Azadani, Reyhaneh Nasr; Gharibdousti, Fateme Azimi; Rizi, Elmira Mousavi; Khosravi, Arezoo; Zarepour, Atefeh; Zarrabi, Ali
    Recently, managing the chronic skin wounds has become increasingly challenging for healthcare professionals due to the intricate orchestration of cellular and molecular processes involved that lead to the uncontrollable inflammatory reactions which hinder the healing process. Therefore, different types of wound dressings with immunomodulatory properties have been developed in recent years to effectively regulate the immune responses, enhance angiogenesis, promote re-epithelialization, and accelerate the wound healing process. This study aims to develop a new type of immunomodulatory wound dressing utilizing carboxymethyl cellulose (CMC)/sodium alginate (Alg)-simvastatin (SIM) to simultaneously enhance the inflammatory responses and the wound healing ratio. The CMC/Alg-SIM hydrogels exhibited appropriate swelling ratio, water vapor transmission rate, and desirable degradation rate, depending on the SIM content. The fabricated dressing showed sustained release of SIM (during 5 days) that improved the proliferation of skin cells. According to the in vitro findings, the CMC/Alg-SIM hydrogel exhibited controlled pro-inflammatory responses (decreased 2.5- and 1.6-times IL-6 and TNF-alpha, respectively) and improved secretion of anti-inflammatory cytokines (increased 1.5- and 1.3-times IL-10 and TGF-beta, respectively) in comparison with CMC/Alg. Furthermore, the CMC/Alg-SIM hydrogel facilitated rapid wound healing in the rat model with a full-thickness skin defect. After 14 days post-surgery, the wound healing ratio in the CMC/Alg hydrogel group (-93%) was significantly greater than the control group (-58%). Therefore, the engineered CMC/Alg-SIM hydrogel with desired immunomodulatory properties possesses the potential to enhance and accelerate skin regeneration for the management of chronic wound healing.
  • Küçük Resim Yok
    Öğe
    Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression
    (Mdpi, 2024) Strippoli, Raffaele; Niayesh-Mehr, Reyhaneh; Adelipour, Maryam; Khosravi, Arezoo; Cordani, Marco; Zarrabi, Ali; Allameh, Abdolamir
    Simple Summary This manuscript focuses on the complex relationships between autophagy and epithelial mesenchymal transition (EMT) in cancer. Autophagy, a cellular degradation process, and EMT, a mechanism where epithelial cells acquire mesenchymal features, both play significant roles in cancer development. This review aims to explore how these processes interact, particularly how autophagy impacts cancer cell fate during EMT. The findings from this study are expected to contribute to a better understanding of cancer biology and could potentially impact cancer treatment strategies, as both autophagy and EMT are considered targets for therapy.Abstract Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
  • Küçük Resim Yok
    Öğe
    Glycosylated nanoplatforms: From glycosylation strategies to implications and opportunities for cancer theranostics
    (Elsevier B.V., 2024) Zare, Iman; Zirak Hassan Kiadeh, Shahrzad; Varol, Ayşegül; Ören Varol, Tuğba; Varol, Mehmet; Sezen, Serap; Zarepour, Atefeh; Mostafavi, Ebrahim; Zahed Nasab, Shima; Rahi, Amid; Khosravi, Arezoo; Zarrabi, Ali
    Glycosylated nanoplatforms have emerged as promising tools in the field of cancer theranostics, integrating both therapeutic and diagnostic functionalities. These nanoscale platforms are composed of different materials such as lipids, polymers, carbons, and metals that can be modified with glycosyl moieties to enhance their targeting capabilities towards cancer cells. This review provides an overview of different modification strategies employed to introduce glycosylation onto nanoplatforms, including chemical conjugation, enzymatic methods, and bio-orthogonal reactions. Furthermore, the potential applications of glycosylated nanoplatforms in cancer theranostics are discussed, focusing on their roles in drug delivery, imaging, and combination therapy. The ability of these nanoplatforms to selectively target cancer cells through specific interactions with overexpressed glycan receptors is highlighted, emphasizing their potential for enhancing efficacy and reducing the side effects compared to conventional therapies. In addition, the incorporation of diagnostic components onto the glycosylated nanoplatforms provided the capability of simultaneous imaging and therapy and facilitated the real-time monitoring of treatment response. Finally, challenges and future perspectives in the development and translation of glycosylated nanoplatforms for clinical applications are addressed, including scalability, biocompatibility, and regulatory considerations. Overall, this review underscores the significant progress made in the field of glycosylated nanoplatforms and their potential to revolutionize cancer theranostics. © 2024 Elsevier B.V.
  • Küçük Resim Yok
    Öğe
    Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies
    (Royal Soc Chemistry, 2024) Zarepour, Atefeh; Khosravi, Arezoo; Yuecel Ayten, Necla; cakir Hatir, Pinar; Iravani, Siavash; Zarrabi, Ali
    Graphene quantum dots (GQDs) hold great promise for photodynamic and photothermal cancer therapies. Their unique properties, such as exceptional photoluminescence, photothermal conversion efficiency, and surface functionalization capabilities, make them attractive candidates for targeted cancer treatment. GQDs have a high photothermal conversion efficiency, meaning they can efficiently convert light energy into heat, leading to localized hyperthermia in tumors. By targeting the tumor site with laser irradiation, GQD-based nanosystems can induce selective cancer cell destruction while sparing healthy tissues. In photodynamic therapy, light-sensitive compounds known as photosensitizers are activated by light of specific wavelengths, generating reactive oxygen species that induce cancer cell death. GQD-based nanosystems can act as excellent photosensitizers due to their ability to absorb light across a broad spectrum; their nanoscale size allows for deeper tissue penetration, enhancing the therapeutic effect. The combination of photothermal and photodynamic therapies using GQDs holds immense potential in cancer treatment. By integrating GQDs into this combination therapy approach, researchers aim to achieve enhanced therapeutic efficacy through synergistic effects. However, biodistribution and biodegradation of GQDs within the body present a significant hurdle to overcome, as ensuring their effective delivery to the tumor site and stability during treatment is crucial for therapeutic efficacy. In addition, achieving precise targeting specificity of GQDs to cancer cells is a challenging task that requires further exploration. Moreover, improving the photothermal conversion efficiency of GQDs, controlling reactive oxygen species generation for photodynamic therapy, and evaluating their long-term biocompatibility are all areas that demand attention. Scalability and cost-effectiveness of GQD synthesis methods, as well as obtaining regulatory approval for clinical applications, are also hurdles that need to be addressed. Further exploration of GQDs in photothermal and photodynamic cancer therapies holds promise for advancements in targeted drug delivery, personalized medicine approaches, and the development of innovative combination therapies. The purpose of this review is to critically examine the current trends and advancements in the application of GQDs in photothermal and photodynamic cancer therapies, highlighting their potential benefits, advantages, and future perspectives as well as addressing the crucial challenges that need to be overcome for their practical application in targeted cancer therapy. Recent advancements pertaining to the application of GQD-based nanosystems in photothermal and photodynamic cancer therapies are discussed, highlighting crucial challenges, advantages, and future perspectives.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Intersecting pathways: The role of hybrid E/M cells and circulating tumor cells in cancer metastasis and drug resistance
    (Churchill Livingstone, 2024) Hariri, Amirali; Mirian, Mina; Khosravi, Arezoo; Zarepour, Atefeh; Iravani, Siavash; Zarrabi, Ali
    Cancer metastasis and therapy resistance are intricately linked with the dynamics of Epithelial-Mesenchymal Transition (EMT) and Circulating Tumor Cells (CTCs). EMT hybrid cells, characterized by a blend of epithelial and mesenchymal traits, have emerged as pivotal in metastasis and demonstrate remarkable plasticity, enabling transitions across cellular states crucial for intravasation, survival in circulation, and extravasation at distal sites. Concurrently, CTCs, which are detached from primary tumors and travel through the bloodstream, are crucial as potential biomarkers for cancer prognosis and therapeutic response. There is a significant interplay between EMT hybrid cells and CTCs, revealing a complex, bidirectional relationship that significantly influences metastatic progression and has a critical role in cancer drug resistance. This resistance is further influenced by the tumor microenvironment, with factors such as tumor-associated macrophages, cancer-associated fibroblasts, and hypoxic conditions driving EMT and contributing to therapeutic resistance. It is important to understand the molecular mechanisms of EMT, characteristics of EMT hybrid cells and CTCs, and their roles in both metastasis and drug resistance. This comprehensive understanding sheds light on the complexities of cancer metastasis and opens avenues for novel diagnostic approaches and targeted therapies and has significant advancements in combating cancer metastasis and overcoming drug resistance. © 2024 Elsevier Ltd
  • Yükleniyor...
    Küçük Resim
    Öğe
    Lipid nanoparticles driving mRNA vaccine innovations: From concept to clinic
    (Elsevier Ltd, 2025) Hariri, Amirali; Mirian, Mina; Zarepour, Atefeh; Khosravi, Arezoo; Iravani, Siavash; Zarrabi, Ali
    Messenger RNA (mRNA) vaccines have emerged as a transformative approach to immunization, driven by their ability to encode specific proteins that elicit targeted immune responses. However, the inherent instability of mRNA and its vulnerability to enzymatic degradation have necessitated the development of sophisticated delivery systems. This review explores the latest advancements in non-viral nanoparticle platforms-particularly lipid nanoparticles (LNPs), cationic liposomes, and lipid-polymer hybrids-for the efficient and safe delivery of mRNA. We analyze the structural and functional components of these nanoplatforms such as ionizable lipids, phospholipids, and PEGylated lipids, which enhance mRNA stability, circulation, and cellular uptake. Key challenges, including immunogenicity, cytotoxicity, and the "PEG dilemma" are examined alongside emerging solutions such as stimuli-responsive elements and targeted ligand modifications. Special emphasis is placed on microfluidic synthesis as a scalable production technique for generating uniform, clinically viable mRNA-loaded nanoparticles. By integrating insights from nanotechnology, immunology, and clinical medicine, this review highlights the critical innovations and ongoing challenges that shape the future of mRNA vaccine development. The conclusions drawn underscore the pivotal role of nanoparticle-based delivery systems in maximizing mRNA vaccine efficacy and advancing personalized immunization strategies against infectious diseases and cancer. ©
  • Küçük Resim Yok
    Öğe
    MOFs and MOF-Based Composites as Next-Generation Materials for Wound Healing and Dressings
    (Wiley-V C H Verlag Gmbh, 2024) Bigham, Ashkan; Islami, Negar; Khosravi, Arezoo; Zarepour, Atefeh; Iravani, Siavash; Zarrabi, Ali
    In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration. Recent advancements pertaining to the applications of MOFs and their composites for wound healing and dressings are deliberated, with the purpose of identifying knowledge gaps, evaluating challenges, and guiding future directions in the field. image
  • Yükleniyor...
    Küçük Resim
    Öğe
    MXene-based composites in smart wound healing and dressings
    (Royal society of chemistry, 2024) Zarepour, Atefeh; Rafati, Nesa; Khosravi, Arezoo; Rabiee, Navid; Iravani, Siavash; Zarrabi, Ali
    MXenes, a class of two-dimensional materials, exhibit considerable potential in wound healing and dressing applications due to their distinctive attributes, including biocompatibility, expansive specific surface area, hydrophilicity, excellent electrical conductivity, unique mechanical properties, facile surface functionalization, and tunable band gaps. These materials serve as a foundation for the development of advanced wound healing materials, offering multifunctional nanoplatforms with theranostic capabilities. Key advantages of MXene-based materials in wound healing and dressings encompass potent antibacterial properties, hemostatic potential, pro-proliferative attributes, photothermal effects, and facilitation of cell growth. So far, different types of MXene-based materials have been introduced with improved features for wound healing and dressing applications. This review covers the recent advancements in MXene-based wound healing and dressings, with a focus on their contributions to tissue regeneration, infection control, anti-inflammation, photothermal effects, and targeted therapeutic delivery. We also discussed the constraints and prospects for the future application of these nanocomposites in the context of wound healing/dressings. Recent advancements in MXene-based wound dressings are discussed, focusing on their contributions to tissue regeneration, infection control, anti-inflammation and photothermal effects, and targeted therapeutic delivery.
  • «
  • 1 (current)
  • 2
  • »

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim