Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Iqbal, Muhammad Waqas" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Designing of BiFe2O3@NiCoS@rGO nanocomposite electrode: A versatile platform for high-performance energy storage and electrolyte SIW/AN
    (Elsevier Ltd., 2025) Mümtaz, Muhammad Azhar; Afzal, Amir Muhammad; Waris, Muhammad Hamza; Ali, Muhammad; Iqbal, Muhammad Waqas; Alqarni, Areej S.; Issa, Shams A.M.; Zakaly, Hesham M.H.
    A comprehensive investigation of new materials and compositional modifications has made high-performance hybrid supercapacitor electrodes. This work mainly focuses on the synthesis of nickel cobalt sulfide (NiCoS) by hydrothermal methods and then adding bismuth ferrite (BiFe2O3) and the measurement of the electrochemical properties. The “salt in water” (SIW) solutions, which are super-concentrated aqueous electrolytes, enable a significant reduction in water activity and increase the electrochemical stability window, is utilized. The electrochemical analysis is performed using the two and three-electrode systems. The BiFe2O3@NiCoS@rGO electrode attained a noteworthy maximum capacity (Qs) of 393.7 mAhg−1 in a three-electrode assembly. The BiFe2O3@NiCoS@rGO//A.C showed a considerable Qs of 52.3 mAh/g, an improved energy density (Ed) of 79.2 W h kg−1, and a high power density (Pd) of 2.2 kW kg−1 in two electrode systems. The device has undergone extensive testing, with up to 5000 cycles, and has demonstrated an exceptional capacity retention rate of 88.2 %. Based on these intriguing findings, the BiFe2O3@NiCoS@rGO nano-composite displays immense promise for developing electrodes in advanced hybrid supercapacitors. © 2024 Elsevier B.V.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Designing of High-Performance MnNiS@MXene Hybrid Electrode for Energy Storage and Photoelectrochemical Applications
    (Multidisciplinary Digital Publishing Institute (MDPI), 2024) Ahmad, Maqsood; Imran, Muhammad; Afzal, Amir Muhammad; Ahsan ul Haq, Muhammad; Alqarni, Areej S.; Iqbal, Muhammad Waqas; Issa, Shams A. M.; Zakaly, Hesham M. H.
    The overconsumption of fossil fuels is leading to worsening environmental damage, making the generation of clean, renewable energy an absolute necessity. Two common components of electrochemical energy storage (EES) devices are batteries and supercapacitors (SCs), which are among the most promising answers to the worldwide energy issue. In this study, we introduce an exceptionally efficient electrode material for supercapacitors, composed of a hydrothermally synthesized composite known as MnNiS@MXene. We utilized XRD, SEM, and BET to analyze the material’s crystallinity, morphology, and surface area. The Qs of MnNiS@MXene was a remarkable 1189.98 C/g or 1983.3 F/g at 2 A/g under three electrode assemblies in 1 M KOH electrolyte solution. Activated carbon was used as the negative electrode, while MnNiS@MXene served as the positive electrode in the assembled supercapattery device (MnNiS@MXene//AC). This device showed exceptional performance, a specific capacity of 307.18 C/g, a power density of 1142.61 W/kg, and an energy density of 34.79 Wh/kg. Additionally, cyclic durability was evaluated through 7000 cycles of charging/discharging, demonstrating that it maintained approximately 87.57% of its original capacity. The successful integration of these materials can lead to electrodes with superior energy storage capabilities and efficient photoelectrochemical performance. The aforementioned findings suggest that MnNiS@MXene exhibits promising potential as an electrode material for forthcoming energy storage systems. © 2024 by the authors.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Exploring the electrochemical potential of MoLa2O4/rGO/Co-MOF nanocomposites in energy storage and monosodium glutamate detection
    (Elsevier ltd, 2025) Muzaffar, Nimra; Barsoum, Imad; Afzal, Amir Muhammad; Iqbal, Muhammad Waqas; Ahmad, Zubair; Alqarni, Areej S.; Issa, Shams A.M.; Zakaly, Hesham M.H.
    Monosodium glutamate (MSG), a sodium salt that comes from a non-essential amino acid, is generally employed as a flavor accompaniment in numerous diet recipes. Metal oxides containing oxygen vacancies present a potential opportunity for utilization as charge storage materials in supercapattery applications. This work illustrates the fabrication of the MoLa2O4@Co-MOF@rGO nanocomposite via a combination of hydrothermal and modified Hummer methods. The structure of the fabricated MoLa2O4@Co-MOF@rGO nanocomposite was assessed by utilizing scanning electron microscopy (SEM), whereas the structural analysis was conducted via X-ray diffraction (XRD). The superior electrochemical parameters of the MoLa2O4@Co-MOF@rGO nanocomposite over pure MoLa2O4 and MoLa2O4@Co-MOF were ascribed to the combined effect of MoLa2O4, Co-MOF, and rGO. The specific capacitance (Cs) of 310.1 Fg(-1) was achieved for MoLa2O4 and 626.8 Fg(-1) for MoLa2O4@Co-MOF. Among all samples, the MoLa2O4@Co-MOF@rGO electrode demonstrates an extraordinary Cs of 1716 Fg(-1) at 3 mVs(-1). The energy storage mechanism is explained using the using Randles-Sevcik and Dunn's models. The MoLa2O4@Co-MOF@rGO//activated carbon (AC) asymmetric supercapacitor configuration demonstrates the Cs of 1470 Fg(-1) at 3 mVs(-1) along with a particular energy of 58 Whkg(-1) and a power density (P-d) of 2500 Wkg(-1). A MoLa2O4@Co-MOF@rGO nanocomposite-based amperometric immunosensor was designed to detect monosodium glutamate (MSG). A linear relationship was consistently detected between MSG concentration and the associated current change across the complete detection range of 0.05-200 mu M. The multifunctional MoLa2O4@Co-MOF@rGO ternary nanocomposite electrode material opens up new prospects for designing hybrid devices in energy harvesting and food-related applications.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim