Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Huang, Hesheng" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Automated breast cancer detection in mammography using ensemble classifier and feature weighting algorithms
    (Pergamon-Elsevier Science Ltd, 2023) Yan, Fei; Huang, Hesheng; Pedrycz, Witold; Hirota, Kaoru
    Breast cancer exhibits one of the highest incidence and mortality rates among all cancers affecting women. The early detection of breast cancer reduces mortality and is crucial for prolonging life expectancy. Although mammography is the most often used screening technique in clinical practice, previous studies reviewing mammograms diagnosed by radiologists have commonly revealed false negatives and false positives. Ongoing advances in machine learning techniques have triggered new motivation for the development of computer-aided diagnosis (CAD) systems, which could be applied to assist radiologists in improving final diagnostic accuracy. In this study, an automated methodology for detecting breast cancer in mammography images is proposed based on an ensemble classifier and feature weighting algorithms. First, a novel region extraction approach is proposed to constrain the search area for suspicious breast lesions and an original pectoral removal method is proposed to avoid interference when identifying a region of interest (ROI). In addition, an effective segmentation strategy is developed to automatically identify ROIs whose textural and morphological features are then fused and weighted to generate new feature vectors using a feature weighting algorithm. Finally, an ensemble classifier model is designed using k-nearest neighbor (KNN), bagging, and eigenvalue classification (EigenClass) to determine whether a mammogram contains normal, benign, or malignant tumors based on a majority voting rule. A series of experiments was conducted using the Digital Database for Screening Mammography (DDSM) and Mammographic Image Analysis Society (MIAS) datasets, the results of which demonstrated the proposed scheme outperformed comparable algorithms.
  • Küçük Resim Yok
    Öğe
    A disease diagnosis system for smart healthcare based on fuzzy clustering and battle royale optimization
    (Elsevier, 2024) Yan, Fei; Huang, Hesheng; Pedrycz, Witold; Hirota, Kaoru
    The ongoing growth of the Internet of Things and machine learning technology have provided increased motivation for the development of smart healthcare. In this study, a disease diagnosis system is proposed for remote identification and early prediction in smart healthcare environments. The originality of this study resides in the innovative implementation of ensuing modules to improve diagnostic accuracy of the system. First, fuzzy clustering based on the forest optimization algorithm is employed to detect outliers and a self-organizing fuzzy logic classifier is applied to supplement missing data in electronic medical records (EMRs). A feature selection technique using the battle royale optimization algorithm is then developed to remove redundant information and identify optimal EMR features. The refined and fused data are further classified using an eigenvalue-based machine learning algorithm to determine whether a patient exhibits a certain disease. Simulation experiments are conducted with widely used heart disease and diabetes datasets to evaluate the performance of the proposed system, using accuracy, precision, recall, and F-measure as evaluation metrics.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim