Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Heydari, J." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A two-stage risk-based framework for dynamic configuration of a renewable-based distribution system considering demand response programs and hydrogen storage systems
    (Elsevier Ltd, 2024) Mojaradi, Z.; Tavakkoli-Moghaddam, R.; Bozorgi-Amiri, A.; Heydari, J.
    Distribution feeder reconfiguration (DFR) in distribution systems can enhance operating conditions by reducing losses and improving voltage indices. This paper introduces a dual-stage risk-based framework that concurrently tackles day-ahead reconfiguration and microgrid scheduling within the distribution network. To control the negative aspects of uncertainties, the proposed framework integrates energy storage systems (ESS/HSS) and demand response programs (DRPs) at the network level, enhancing adaptability. The initial stage of the proposed model employs the AC power flow model, utilizing loss and voltage deviation functions as objective benchmarks for network reconfiguration. The scheduling is meticulously executed per interval, deriving optimized structures under diverse scenarios with the aid of a case reduction technique (CRT) to streamline solutions. The ultimate solution employs the grey wolf optimization (GWO) algorithm and CPLEX solver in the first and second stages respectively. Outcomes from applying this approach to the adjusted 118-bus network manifest improved operational conditions and voltage quality through reconfiguration. Impressively, the integration of ESS/HSS and DRPs yields a substantial 22.34% reduction in total operating costs, a conclusion substantiated by the numerical findings. Furthermore, by leveraging the CRT, a remarkable 56.17% reduction in problem-solution time is achieved. © 2024 Hydrogen Energy Publications LLC

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim