Yazar "Henaish, A.M.A." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An experimental evaluation of CdO/PbO-B2O3 glasses containing neodymium oxide: Structure, electrical conductivity, and gamma-ray resistance(Elsevier Ltd, 2022) Zakaly, H.M.H.; Issa, S.A.M.; Tekin, Hüseyin Ozan; Badawi, A.; Saudi, H.A.; Henaish, A.M.A.; Rammah, Y.S.A comprehensive set of experimental measurements was carried out to investigate the influence of Nd3+ ions on the structure, electrical conductivity, and gamma-ray protection of CdO/PbO-B2O3 glasses containing neodymium oxide with the chemical formula 20CdO/20PbO/(60-x)B2O3/xNd2O3 (0 ? x ? 4 wt%) (5.034-5.232 g/cm3). Raman spectra have been obtained over a range of 1600-180 cm?1, and electrical conductivity (?) has been measured at frequencies of 0.120, 1, 10, and 100 KHz, as well as at other frequencies. In this study, gamma-ray attenuation has been studied at various gamma-ray energies (ranging from 0.081 to 2.614 MeV). The results revealed that the PbO in the investigated glass networks fills the interspaces of [BO3] units with Pb2+ ions, therefore serving as a network member. In general, it was found that (?) of the examined glasses falls as temperature increases, reaching its lowest value at the composition's transition temperature. Above this transition temperature, conductivity rises. Using 0.662 MeV, the studied samples exhibited experimental linear attenuation coefficients (?exp.) of 0.3369 cm?1, 0.3401 cm?1, 0.3434 cm?1, 0.3467 cm?1, and 0.3501 cm?1 (for the Nd-0.0, Nd-1.0, Nd-0.2, Nd-0.3, and Nd-4.0 glasses, respectively). With respect to the half value thickness (T1/2) and mean free path (?), the Nd-4.0 sample has the lowest values at all of the gamma-ray energies tested. According to these results, the Nd-4.0 glass sample exhibits higher attenuation capabilities against ionizing radiation when compared to the other samples. © 2022Öğe Thermal and optical characteristics of synthesized sand/CeO2 glasses: Experimental approach(Springer, 2022) Henaish, A.M.A.; Zakaly, H.M.H.; Saudi, H.A.; Issa, S.A.M.; Tekin, Hüseyin Ozan; Hessein, M.M.; Rammah, Y.S.In this study, glass samples of composition 20PbO-20CaO-20Sand-(40 ? x)B2O3-xCeO2, where x = 0, 2.5, 5, 7.5, and 10 in wt.% and sand = SiO2 (90.4%) + CaO (2.8%) + ZrO2 (2.3%) + Fe2O3 (2.1%), were fabricated via the ordinary melt quenching technique. The thermal and optical properties of the glasses were experimentally investigated using differential scanning calorimetry (DSC) analysis, which is measured as a function of temperature based on the difference in the amount of heat needed to raise the temperature of a sample and reference. All glasses were found to be thermally stable up to 550°C. The glass transition temperature (Tg) varied from 211°C to 219°C, crystallization temperature (Tc) varied from 303°C to 310°C, and melting point (Tm) was 577°C. The values of the indirect optical energy band gaps (EOptical, Indirect) reduced from 2.63 eV to 2.28 eV, while the direct gaps (EOptical, Direct) reduced from 5.07 eV to 4.17 eV. Urbach’s energy (EU) was changed from 0.42 eV to 0.46 eV. The dielectric constant behaved similarly to the refractive index and absorption coefficient of the proposed glasses. The refractive index data were analyzed to obtain important optical information and the corresponding derivative electrical parameters, namely, the oscillator energy, dispersion energy, dielectric constant at high frequency, the dielectric loss, and the energy-loss functions. There was a remarkable increase in the optical conductivity (?opt) with increasing CeO2 content, with peaks appearing in all samples doped by CeO2 and reaching a peak maxima of about 2.72–3.10 eV. Volume energy loss (VELF) and surface energy loss (SELF) functions were increased with increasing CeO2 content, with a characteristic peak at around 3.47 eV for all proposed samples. © 2022, The Minerals, Metals & Materials Society.