Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Hadji Molana, Seyyed Mohammad" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A sustainable vaccine supply-production-distribution network with heterologous and homologous vaccination strategies: Bi-objective optimization
    (Elsevier Ltd., 2025) Jahed, Ali; Hadji Molana, Seyyed Mohammad; Tavakkoli Moghaddam, Reza
    Heterologous and homologous Coronavirus Disease 2019 (COVID-19) vaccination against Severe Acute Respiratory Syndrome (SARS)-CoV-2 are robust and proactively adaptable strategies. However, there is still a lack of appropriate mathematical models for integrating vaccination strategies into the vaccine supply chain network. This study develops a supply-production-distribution-inventory-allocation problem in the Sustainable Vaccine Supply-Production-Distribution Network (SVSPDN) to fill this gap for the first time. The outstanding novelties of this research are prioritizing vaccines and sequencing injection doses to increase vaccination effectiveness. In addition, the remarkable new contribution of the proposed mathematical model is the design of new bi-objective, multi-dose, multi-level, and multi-period to ensure the sustainability performance of the entire network. This aim is achievable by minimizing the cost of supplying, producing, and distributing vaccines and fulfilling social goals by maximizing vaccination effectiveness. Also, a scenario-based robust stochastic optimization approach is presented to handle uncertainties. Since the SVSPDN design is an NP-hard problem, to solve the proposed mathematical model, three Pareto-based evolutionary algorithms, including Non-Dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-Objective Gray Wolf Optimizer (MOGWO), are applied. The Taguchi design method is applied to tuning the parameters due to the sensitivity of meta-heuristic algorithms to input parameters. Then, a comparison is performed using four assessment metrics, including the Number of Pareto Solutions (NPS), Diversification Matrix (DM), Mean Ideal Distance (MID), Spread of Non-Dominance Solutions (SNS), and Computation Time (CT). The results reveal that the NSGA-II and MOGWO algorithms have performances that are very close to each other. However, MOGWO performs better in tackling the problem and is superior to the NSGA-II and MOPSO regarding assessment metrics and computation time. A case study of Iran is investigated to indicate the efficiency and applicability of the proposed model. Finally, sensitivity analyses, managerial insights, and practical implications are discussed. © 2024 Elsevier Ltd

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim