Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gunoglu, Kadir" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A comprehensive microstructural and transmission analysis on oxide dispersion-strengthened (ODS) alloys: Impact of erbium oxide (Er2O3) concentration on physical, structural, gamma-ray, and neutron attenuation properties
    (Elsevier Sci Ltd, 2024) Gunoglu, Kadir; Guler, Seval Hale; Guler, Omer; Almisned, Ghada; Ozkavak, Hatice Varol; Albayrak, M. Gokhan; Akkurt, Iskender
    This study explores the impact of integrating varying concentrations of Erbium Oxide (Er2O3) into Oxide Dispersion Strengthened (ODS) alloys, specifically focusing on gamma-ray and neutron attenuation properties. Utilizing a 316L stainless steel matrix, Er2O3 was methodically incorporated in concentrations ranging from 1 % to 21 % by weight. The structural and radiation attenuation properties of the resultant alloys were comprehensively analyzed using techniques such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and experimental gamma-ray transmission studies. The results demonstrate a significant enhancement in gamma-ray shielding with increased Er2O3 content. This enhancement is quantitatively evidenced by increased linear attenuation coefficient, elevated effective Electron Density (Neff), reduced Half-Value Layers (HVL), and higher effective atomic numbers (Zeff). These findings are crucial for nuclear applications where efficient gamma-ray shielding is paramount. Conversely, a decrease in the effective removal cross section (sigma R) for neutron attenuation was observed with higher Er2O3 concentrations. This suggests a potential compromise in neutron shielding efficiency, attributed to the dilution of neutron-absorbing base elements in the alloy. Additionally, the study reveals notable changes in the microstructural properties of the alloys, including alterations in particle size, distribution, and agglomeration, influenced by varying Er2O3 concentrations. In conclusion, this research provides valuable insights into the design of ODS alloys for nuclear radiation shielding, highlighting the balance between gamma-ray attenuation and neutron shielding properties. The study's findings contribute to the development of advanced materials for safer and more efficient nuclear technology applications.
  • Küçük Resim Yok
    Öğe
    An investigation on gamma-ray and neutron attenuation properties of multi-layered Al/B4C composite
    (Elsevier, 2023) Almisned, Ghada; Gunoglu, Kadir; Ozkavak, Hatice Varol; Sen Baykal, Duygu; Tekin, H. O.; Karpuz, Nurdan; Akkurt, Iskender
    Nowadays, the concept of multi-layered composite materials is attracting the researchers in terms of enhancing the capabilities of shielding materials as well as extending the scope of utilization towards space sciences and cosmic radiation application. In this study, we report the manufacturing, design, and experimental investigation on newly developed multi-layered Al/B4C shielding composites. Al powder material with a purity of 99% and an average size of 15 & mu;m is used as matrix material. Next, B4C powders with an average size of 9 & mu;m are incor-porated into the matrix as reinforcement material. Accordingly, we manufactured several different multilayer Al-B4C shield samples of 3 cm diameter and 1 cm height through powder metallurgy method. Gamma-ray trans-mission properties are determined using 3 x 3 NaI(Tl) scintillation detector through 60Co and 137Cs point isotropic radioisotopes. Moreover, MCNPX (version 2.7.0) is utilized for deposited energy amount and trans-mission factor calculations for gamma and neutron radiation. Our results showed that geometric configuration plays a crucial role in shielding efficiency of multi-layered materials. Among the manufactured samples, B4C-Al-B4C sample is reported with promising shielding properties against gamma-ray and neutron radiation. A direct relationship between the overall transmission factor values and deposited energy amount (MeV/g) in each sample is also explored for multi-layered composite shields.It was also seen that combination of layers made significantly improvement of radiation shielding properties of materials.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim