Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Entezari, Maliheh" seçeneğine göre listele

Listeleniyor 1 - 9 / 9
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Emerging role of exosomes in cancer progression and tumor microenvironment remodeling
    (BioMed Central, 2022) Paskeh, Mahshid Deldar Abad; Entezari, Maliheh; Mirzaei, Sepideh; Zabolian, Amirhossein; Zarrabi, Ali
    Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment. Graphical Abstract: [Figure not available: see fulltext.]. © 2022, The Author(s).
  • Yükleniyor...
    Küçük Resim
    Öğe
    Long non-coding RNAs and exosomal incRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling
    (Elsevier Science, 2022) Entezari, Maliheh; Ghanbarirad, Maryam; Taheriazam, Afshin; Sadrkhanloo, Mehrdokht; Zabolian, Amirhossein; Shekhi Beig Goharrizi, Mohammad Ali; Hushmandi, Kiavash; Aref, Amir Reza; Ashrafizadeh, Milad; Zarrabi, Ali; Nabavi, Noushin; Rabiee, Navid; Hashemi, Mehrdad; Samarghandian, Saeed
    Among the different kinds of tumors threatening human life, lung cancer is one that is commonly observed in both males and females. The aggressive behavior of lung cancer and interactions occurring in tumor microenvironment enhances the malignancy of this tumor. The lung tumor cells have demonstrated capacity in developing chemo- and radio-resistance. LncRNAs are a category of non-coding RNAs that do not encode proteins, but their aberrant expression is responsible for tumor development, especially lung cancer. In the present review, we focus on both lncRNAs and exosomal lncRNAs in lung cancer, and their ability in regulating proliferation and metastasis. Cell cycle progression and molecular mechanisms related to lung cancer metastasis such as EMT and MMPs are regulated by lncRNAs. LncRNAs interact with miRNAs, STAT, Wnt, EZH2, PTEN and PI3K/Akt signaling pathways to affect progression of lung cancer cells. LncRNAs demonstrate both tumor-suppressor and tumor-promoting functions in lung cancer. They can be considered as biomarkers in lung cancer and especially exosomal lncRNAs present in body fluids are potential tools for minimally invasive diagnosis. Furthermore, we
  • Yükleniyor...
    Küçük Resim
    Öğe
    Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling
    (Elsevier, 2022) Entezari, Maliheh; Ghanbarirad, Maryam; Taheriazam, Afshin; Sadrkhanloo, Mehrdokht; Zabolian, Amirhossein; Goharrizi, Mohammad Ali Shekhi Beig; Hushmandi, Kiavash; Aref, Amir Reza; Ashrafizadeh, Milad; Zarrabi, Ali; Nabavi, Noushin; Rabiee, Navid; Hashemi, Mehrdad; Samarghandian, Saeed
    Among the different kinds of tumors threatening human life, lung cancer is one that is commonly observed in both males and females. The aggressive behavior of lung cancer and interactions occurring in tumor microenvironment enhances the malignancy of this tumor. The lung tumor cells have demonstrated capacity in developing chemo- and radio-resistance. LncRNAs are a category of non-coding RNAs that do not encode proteins, but their aberrant expression is responsible for tumor development, especially lung cancer. In the present review, we focus on both lncRNAs and exosomal lncRNAs in lung cancer, and their ability in regulating proliferation and metastasis. Cell cycle progression and molecular mechanisms related to lung cancer metastasis such as EMT and MMPs are regulated by lncRNAs. LncRNAs interact with miRNAs, STAT, Wnt, EZH2, PTEN and PI3K/Akt signaling pathways to affect progression of lung cancer cells. LncRNAs demonstrate both tumor-suppressor and tumor-promoting functions in lung cancer. They can be considered as biomarkers in lung cancer and especially exosomal lncRNAs present in body fluids are potential tools for minimally invasive diagnosis. Furthermore, we discuss regulation of lncRNAs by anti-cancer drugs and genetic tools as well as the role of these factors in therapy response of lung cancer cells.
  • Küçük Resim Yok
    Öğe
    Nanoliposomes as nonviral vectors in cancer gene therapy
    (John Wiley and Sons Inc, 2024) Yıldız, Safiye Nur; Entezari, Maliheh; Paskeh, Mahshid Deldar Abad; Mirzaei, Sepideh; Kalbasi, Alireza; Zabolian, Amirhossein; Hashemi, Farid; Hushmandi, Kiavash; Hashemi, Mehrdad; Raei, Mehdi; Goharrizi, Mohammad Ali Sheikh Beig; Aref, Amir Reza; Zarrabi, Ali; Ren, Jun; Orive, Gorka; Rabiee, Navid; Ertaş, Yavuz Nuri
    Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions. © 2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Non-coding RNAs and macrophage interaction in tumor progression
    (Elsevier Ireland Ltd, 2022) Entezari, Maliheh; Sadrkhanloo, Mehrdokht; Rashidi, Mohsen; Asnaf, Sholeh Etehad; Taheriazam, Afshin; Hashemi, Mehrdad; Ashrafizadeh, Milad; Zarrabi, Ali; Rabiee, Navid; Hushmandi, Kiavash; Mirzaei, Sepideh; Sethi, Gautam
    The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis. © 2022 Elsevier B.V.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Non-coding RNAs targeting notch signaling pathway in cancer : from proliferation to cancer therapy resistance
    (Elsevier B.V., 2022) Hashemi, Mehrdad; Hasani, Sahar; Hajimazdarany, Shima; Mirmazloomi, Seyed Reza; Makvandy, Sara; Zabihi, Abbas; Goldoost, Yeganeh; Gholinia, Nazanin; Kakavand, Amirabbas; Tavakolpournegari, Alireza; Salimimoghadam, Shokooh; Nabavi, Noushin; Zarrabi, Ali; Taheriazam, Afshin; Entezari, Maliheh; Hushmandi, Kiavash
    Cancer is a challenging to treat disease with a high mortality rate worldwide, nevertheless advances in science has led to a decrease in the number of death cases caused by cancer. Aberrant expression of genes occurs during tumorigenesis therefore targeting the signaling pathways that regulate these genes' expression is of importance in cancer therapy. Notch is one of the signaling pathways having interactions with other vital cell signaling molecules responsible for cellular functions such as proliferation, apoptosis, invasion, metastasis, epithelial-to-mesenchymal transition (EMT), angiogenesis, and immune evasion. Furthermore, the Notch pathway is involved in response to chemo- and radiotherapy. Thus, targeting the Notch signaling pathway in cancer therapy can be beneficial for overcoming the therapeutic gaps. Non-coding RNAs (ncRNAs) are a class of RNAs that include short ncRNAs (such as micro RNAs) and long ncRNAs (lncRNAs). MicroRNAs (miRNAs) are ~22 nucleotides in length while lncRNAs have more than 200 nucleotides. Both miRNAs and lncRNAs control vital cellular mechanisms in cells and affect various signaling pathways and Notch is among them. The current review aims to discuss the critical role of ncRNAs in the regulation of the Notch signaling pathway by focusing on different cancer hallmarks including proliferation, apoptosis, autophagy, EMT, invasion, metastasis, and resistance to therapies.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Targeted regulation of autophagy using nanoparticles: New insight into cancer therapy
    (Elsevier, 2022) Paskeh, Mahshid Deldar Abad; Entezari, Maliheh; Clark, Courtney; Zabolian, Amirhossein; Ranjbar, Ehsan; Zarrabi, Ali
    Normal cells depend on autophagy to maintain cellular homeostasis by recycling damaged organelles and misfolded proteins and degrading toxic agents. Similar to apoptosis, targeting autophagy has been under attention in cancer therapy. However, autophagy has both pro-survival and pro-death functions in tumors, and its targeting requires further elucidation. The current review focuses on using nanoparticles for targeting autophagy in cancer treatment. Nanocarriers can deliver autophagy regulators along with chemotherapeutic agents leading to intracellular accumulation in cancer cells and synergistic cancer therapy. Furthermore, genetic tools such as siRNA and shRNA can be used for targeting molecular components that regulate autophagy, such as the ATG12-ATG5-ATG16L1 complex. A number of nanostructures, such as gold and zinc oxide nanoparticles, can be used to enhance oxidative stress-mediated apoptosis and autophagy, reducing cancer progression. Further, using nanoparticles to modulate autophagy potentiates the anti-tumor effects of cisplatin and gefitinib during chemotherapy. Polymeric nanoparticles, lipid-based nanostructures and carbon-based nanomaterials are among other nanoparticles capable of regulating autophagy in cancer cells. Of note, various regulatory components of autophagy such as ATGs, Beclin-1 and LC3-II can be affected by nanomaterials. Based on the role of nanomaterial-induced autophagy as pro-survival or pro-death, further targeting can potentiate the fight against cancer cells. © 2021 Elsevier B.V.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Targeting AMPK signaling in ischemic/reperfusion injury: From molecular mechanism to pharmacological interventions
    (2022) Paskeh, Mahshid Deldar Abad; Asadi, Ava; Mirzaei, Sepideh; Hashemi, Mehrdad; Entezari, Maliheh; Raesi, Rasoul; Hushmandi, Kiavash; Zarrabi, Ali; Ertas, Yavuz Nuri; Aref, Amir Reza; Samarghandian, Saeed; Reiter, Russel J; Ren, Jun
    Ischemia is a pathological process in which blood supply to a particular organ is temporarily interrupted resulting in disturbed biological function and homeostasis of local tissues. Following ischemia, reperfusion and reoxygenation may occur which further worsens oxidative stress-mediated damage in cells and tissues. The combined processes are referred to as ischemia/reperfusion (I/R) injury. Immediate management and treatment of I/R is of utmost importance for preventing irreversible and extensive cellular damage. Apoptosis, inflammation and oxidative stress are the most validated pathologies associated with I/R. AMP-activated protein kinase (AMPK) modulates energy metabolism in cells and its activation occurs in response to elevated AMP and ADP levels. Aberrant levels of AMPK are noted in various pathological settings such as diabetes mellitus, cancer and neurological diseases. This review emphasizes AMPK signaling, its related molecular pathways and therapeutic utility during I/R. Activation of AMPK through phosphorylation prevents apoptosis and reduces oxidative stress and inflammation upon I/R. Inducing AMPK signaling normalizes mitochondrial function to inhibit cell death. Autophagy as a cytoprotective mechanism undergoes activation by AMPK/mTOR and AMPK/ULK1 pathways. AMPK reinforces the antioxidant defense capacity via Nrf2 signaling to counteract oxidative stress in I/R. Protective compounds including phytochemicals activate AMPK to alleviate I/R injury.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting
    (Elsevier Inc., 2022) Sadrkhanloo, Mehrdokht; Entezari, Maliheh; Orouei, Sima; Zabolian, Amirhossein; Mirzaie, Amirreza; Maghsoudloo, Amin; Raesi, Rasoul; Asadi, Neda; Hashemi, Mehrdad; Zarrabi, Ali; Khan, Haroon; Mirzaei, Sepideh; Samarghandian, Saeed
    The nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of redox balance and it responds to various cell stresses that oxidative stress is the most well-known one. The Nrf2 should undergo nuclear translocation to exert its protective impacts and decrease ROS production. On the other hand, ischemic/reperfusion (I/R) injury is a pathological event resulting from low blood flow to an organ and followed by reperfusion. The I/R induces cell injury and organ dysfunction. The present review focuses on Nrf2 function in alleviation of I/R injury. Stimulating of Nrf2 signaling ameliorates I/R injury in various organs including lung, liver, brain, testis and heart. The Nrf2 enhances activity of antioxidant enzymes to reduce ROS production and prevent oxidative stress-mediated cell death. Besides, Nrf2 reduces inflammation via decreasing levels of pro-inflammatory factors including IL-6, IL-1? and TNF-?. Nrf2 signaling is beneficial in preventing apoptosis and increasing cell viability. Nrf2 induces autophagy to prevent apoptosis during I/R injury. Furthermore, it can interact with other molecular pathways including PI3K/Akt, NF-?B, miRNAs, lncRNAs and GSK-3? among others, to ameliorate I/R injury. The therapeutic agents, most of them are phytochemicals such as resveratrol, berberine and curcumin, induce Nrf2 signaling in I/R injury alleviation. © 2022

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim