Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Dezaki, Zahra Kaviani" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    An augmented Tabu search algorithm for the green inventory-routing problem with time windows
    (Elsevier B.V., 2021) Alinaghian, Mahdi; Tirkolaee, Erfan Babaee; Dezaki, Zahra Kaviani; Hejazi, Seyed Reza; Ding, Weiping
    Transportation allocates a significant proportion of Gross Domestic Product (GDP) to each country, and it is one of the largest consumers of petroleum products. On the other hand, many efforts have been made recently to reduce Greenhouse Gas (GHG) emissions by vehicles through redesigning and planning transportation processes. This paper proposes a novel Mixed-Integer Linear Programming (MILP) mathematical model for Green Inventory-Routing Problem with Time Windows (GIRP-TW) using a piecewise linearization method. The objective is to minimize the total cost including fuel consumption cost, driver cost, inventory cost and usage cost of vehicles taking into account factors such as the volume of vehicle load, vehicle speed and road slope. To solve the problem, three meta-heuristic algorithms are designed including the original and augmented Tabu Search (TS) algorithms and Differential Evolution (DE) algorithm. In these algorithms, three heuristic methods of improved Clarke-Wright algorithm, improved Push-Forward Insertion Heuristic (PFIH) algorithm and heuristic speed optimization algorithm are also applied to deal with the routing structure of the problem. The performance of the proposed solution techniques is analyzed using some well-known test problems and algorithms in the literature. Furthermore, a statistical test is conducted to efficiently provide the required comparisons for large-sized problems. The obtained results demonstrate that the augmented TS algorithm is the best method to yield high-quality solutions. Finally, a sensitivity analysis is performed to investigate the variability of the objective function.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim