Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Deliormanli, Aylin M." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Graphene-bioactive glass composites: Structural, Vickers hardness, and gamma-ray attenuation characteristics
    (Frontiers Media Sa, 2023) Deliormanli, Aylin M.; ALMisned, Ghada; Ene, Antoaneta; Tekin, H. O.
    Introduction: Graphene-based materials have gained increasing attention for use in radiation attenuation applications. In this study, pristine graphene nanoplatelet-containing (1, 3, 5, and 10 wt%) borate-based bioactive glass composites were prepared. Methods: Structural properties, Vickers microhardness, and gamma-ray radiation shielding properties of the fabricated composites were examined in detail. Results and Discussion: Results revealed that the inclusion of the graphene in the glass matrix led to a decrease in the bulk density of the glass-based composites from 2.41 to 2.31 g/cm(3). Similarly, a decrease in Vickers hardness was obtained as the graphene concentration was increased due to a convoluted effect of the non-uniform distribution of graphene nanoplatelets in the bioactive glass matrix and the higher residual porosity. Vickers hardness of the bare and the 10 wt% graphene-containing bioactive glass discs were measured to be 5.03 +/- 0.28 GPa and 1.87 +/- 0.56 GPa, respectively. On the other hand, the incorporation of graphene starting from 3 wt% decreased the crack propagation after indentation which may be attributed to an increase in fracture toughness. In the study, fundamental gamma ray absorption properties of graphene-containing bioactive glasses were examined in the 0.015-15 MeV incident photon energy range. For this purpose, the Py-MLBUF code was employed to determine gamma ray absorption parameters. Results showed that linear attenuation coefficients of the glass-based composites decreased due to a decrease in the density of the samples. On the other hand, as graphene was incorporated into the bioactive glass structure, exposure buildup factor and energy absorption buildup factor values increased. The growing graphene ratio in the glass structure contributed negatively to the photon's tendency to interact with the material.
  • Küçük Resim Yok
    Öğe
    Two-dimensional molybdenum disulfide/polymer-coated bioactive glass scaffolds for tissue engineering: Fabrication, structural, mechanical, bioactivity, and radiation interaction properties
    (Elsevier Sci Ltd, 2023) Deliormanli, Aylin M.; Ensoylu, Mertcan; ALMisned, Ghada; Tekin, H. O.
    Molybdenum disulfide (MoS2)-based nanostructures are widely used in environmental protection and biomedicine owing to their biological, physical, chemical, electrical, and mechanical properties. In this study, polycaprolactone (PCL)- and polylactide-co-glycolide (PLGA)-coated bioactive glass scaffolds containing MoS2 nanoparticles are prepared, and their usability in bone tissue engineering applications is evaluated. Borate bioactive glass scaffolds are fabricated using the replication method and coated with PCL or PLGA solutions (5 wt %) containing MoS2 (0.1, 0.2, 0.5, 1, and 2 wt%) nanoparticles. The structural and mechanical properties of the scaffolds and their bioactivity in simulated body fluids are investigated comprehensively. The ionization-radiation-shielding properties are investigated using Monte Carlo simulations. The results show that the polymer coating layer and presence of MoS2 nanoparticles in the polymer matrix improves the mechanical properties of the scaffolds. The addition of MoS2 nanoparticles to the structure increases the hydroxyapatiteforming ability of bioactive glass-based composites. Additionally, the prepared composite scaffolds exhibit high radiation-shielding ability owing to the presence of MoS2 nanoparticles embedded in the polymer matrix that shields the glass surface. Bioactive glass composite scaffolds containing MoS2 nanoparticles demonstrate promising potential for bone regeneration and radiation-shielding applications.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim