Yazar "Dede, Doğu Ömür" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Fatigue behavior of implant-supported cantilevered prostheses in recently introduced CAD-CAM polymers: An in vitro study(Elsevier Inc., 2024) Dönmez, Mustafa Borga; Çakmak, Gülce; Güven, Mehmet Esad; Dede, Doğu Ömür; Abou Ayash, Samir; Yılmaz, BurakStatement of problem: Cantilevered complete arch implant-supported prostheses are commonly fabricated from zirconia and more recently from strength gradient zirconia. Different polymer-based materials indicated for definitive fixed prostheses that could be used with additive or subtractive manufacturing have also been marketed recently. However, knowledge on the long-term fatigue behavior of cantilevered implant-supported prostheses made from these polymer-based materials and strength gradient zirconia is lacking. Purpose: The purpose of this in vitro study was to evaluate the fatigue behavior of implant-supported cantilevered prostheses of recently introduced computer-aided design and computer-aided manufacturing polymers and zirconia. Material and methods: A master standard tessellation language file of a 9×11×20-mm specimen with a titanium base (Ti-base) space that represented an implant-supported cantilevered prosthesis was used to fabricate specimens from additively manufactured interim resin (AM), polymethyl methacrylate (SM-PM), nanographene-reinforced polymethyl methacrylate (SM-GR), high-impact polymer composite resin (SM-CR), and strength gradient zirconia (SM-ZR) (n=10). Each specimen was prepared by following the respective manufacturer's recommendations, and Ti-base abutments were cemented with an autopolymerizing luting composite resin. After cementation, the specimens were mounted in a mastication simulator and subjected to 1.2 million loading cycles under 100 N at 1.5 Hz; surviving specimens were subjected to another 1.2 million loading cycles under 200 N at 1.5 Hz. The load was applied to the cantilever extension, 12-mm from the clamp of the mastication simulator. The Kaplan–Meier survival analysis and Cox proportional hazards model were used to evaluate the data (α=.05). Results: Significant differences in survival rate and hazard ratio were observed among materials (P<.001). Among tested materials, SM-ZR had the highest and AM had the lowest survival rate (P≤.031). All materials had a significantly higher hazard ratio than SM-ZR (P≤.011) in the increasing order of SM-GR, SM-PM, SM-CR, and AM. Conclusions: SM-ZR had the highest survival rate with no failed specimens. Even though most of the tested polymer-based materials failed during cyclic loading, these failures were commonly observed during the second 1.2 million loading cycles with 200 N. All materials had a higher hazard ratio than SM-ZR. © 2024 The Authors