Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Davazdahemami, Behrooz" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases
    (Springer, 2023) Topuz, Kazim; Davazdahemami, Behrooz; Delen, Dursun
    During a pandemic, medical specialists have substantial challenges in discovering and validating new disease risk factors and designing effective treatment strategies. Traditionally, this approach entails several clinical studies and trials that might last several years, during which strict preventive measures are enforced to manage the outbreak and limit the death toll. Advanced data analytics technologies, on the other hand, could be utilized to monitor and expedite the procedure. This research integrates evolutionary search algorithms, Bayesian belief networks, and innovative interpretation techniques to provide a comprehensive exploratory-descriptive-explanatory machine learning methodology to assist clinical decision-makers in responding promptly to pandemic scenarios. The proposed approach is illustrated through a case study in which the survival of COVID-19 patients is determined using inpatient and emergency department (ED) encounters from a real-world electronic health record database. Following an exploratory phase in which genetic algorithms are used to identify a set of the most critical chronic risk factors and their validation using descriptive tools based on the concept of Bayesian Belief Nets, the framework develops and trains a probabilistic graphical model to explain and predict patient survival (with an AUC of 0.92). Finally, a publicly available online, probabilistic decision support inference simulator was constructed to facilitate what-if analysis and aid general users and healthcare professionals in interpreting model findings. The results widely corroborate intensive and expensive clinical trial research assessments.
  • Küçük Resim Yok
    Öğe
    A developer-oriented recommender model for the app store: A predictive network analytics approach
    (Elsevier Science Inc, 2023) Davazdahemami, Behrooz; Kalgotra, Pankush; Zolbanin, Hamed M.; Delen, Dursun
    While thousands of new mobile applications (i.e., apps) are being added to the major app markets daily, only a small portion of them attain their financial goals and survive in these competitive marketplaces. A key to the quick growth and success of relatively less popular apps is that they should make their way to the limited list of apps recommended to users of already popular apps; however, the focus of the current literature on consumers has created a void of design principles for app developers. In this study, employing a predictive network analytics approach combined with deep learning-based natural language processing and explainable artificial intelligence techniques, we shift the focus from consumers and propose a developer-oriented recommender model. We employ a set of app-specific and network-driven variables to present a novel approach for predicting potential recommendation relationships among apps, which enables app developers and marketers to characterize and target appropriate consumers. We validate the proposed model using a large (>23,000), longitudinal dataset of medical apps collected from the iOS App Store at two time points. From a total of 10,234 network links (rec-ommendations) formed between the two data collection points, the proposed approach was able to correctly predict 8,780 links (i.e., 85.8 %). We perform Shapley Additive exPlanation (SHAP) analysis to identify the most important determinants of link formations and provide insights for the app developers about the factors and design principles they can incorporate into their development process to maximize the chances of success for their apps.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A machine learning framework for assessing the risk of venous thromboembolism in patients undergoing hip or knee replacement
    (SPRINGERNATURE, 2022) Dezfouli, Elham Rasouli; Delen, Dursun; Zhao, Huimin; Davazdahemami, Behrooz
    Venous thromboembolism (VTE) is a well-recognized complication that is prevalent in patients undergoing major orthopedic surgery (e.g., total hip arthroplasty and total knee arthroplasty). For years, to identify patients at high risk of developing VTE, physicians have relied on traditional risk scoring systems, which are too simplistic to capture the risk level accurately. In this paper, we propose a data-driven machine learning framework to identify such high-risk patients before they undergo a major hip or knee surgery. Using electronic health records of more than 392,000 patients who undergone a major orthopedic surgery, and following a guided feature selection using the genetic algorithm, we trained a fully connected deep neural network model to predict high-risk patients for developing VTE. We identified several risk factors for VTE that were not previously recognized. The best FCDNN model trained using the selected features yielded an area under the ROC curve (AUC) of 0.873, which was remarkably higher than the best AUC obtained by including only risk factors previously known in the medical literature. Our findings suggest several interesting and important insights. The traditional risk scoring tables that are being widely used by physicians to identify high-risk patients are not considering a comprehensive set of risk factors, nor are they as powerful as cutting-edge machine learning methods in distinguishing low- from high-risk patients
  • Küçük Resim Yok
    Öğe
    Predicting and Mitigating Freshmen Student Attrition: A Local-Explainable Machine Learning Framework
    (Springer, 2023) Delen, Dursun; Davazdahemami, Behrooz; Rasouli Dezfouli, Elham
    With the emergence of novel methods for improving machine learning (ML) transparency, traditional decision-support-focused information systems seem to need an upgrade in their approach toward providing more actionable insights for practitioners. Particularly, given the complex decision-making process of humans, using insights obtained from group-level interpretation of ML models for designing individual interventions may lead to mixed results. The present study proposes a hybrid ML framework by integrating established predictive and explainable ML approaches for decision support systems involving the prediction of human decisions and designing individualized interventions accordingly. The proposed framework is aimed at providing actionable insights for designing individualized interventions. It was showcased in the context of college students' attrition problem using a large and feature-rich integrated data set of freshman college students containing information about their demographics, educational, financial, and socioeconomic factors. A comparison of feature importance scores at the group- vs. individual-level revealed that while group-level insights might be useful for adjusting long-term strategies, using them as a one-size-fits-all strategy to design and implement individual interventions is subject to suboptimal outcomes.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim