Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Belarbi, Mohamed-Ouejdi" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Bending, free vibration and buckling finite element analysis of porous functionally graded plates with various porosity distributions using an improved FSDT
    (Taylor & francis, 2024) Belarbi, Mohamed-Ouejdi; Karamanlı, Armağan; Benounas, Soufiane; Daikh, Ahmed Amine
    Functionally graded materials (FGMs) are advanced composite materials with spatially varying properties, and their porosity distribution further enhances their complexity. The distribution pattern of porosity within a porous material plays a crucial role in determining the mechanical response of these structures. Therefore, the main objective of this study is to analyze the bending, free vibration, and buckling characteristics of porous FG plates by considering different porosity distributions and their effects on the overall behavior. To achieve this goal, a new finite element model is developed in the framework of an improved first-order shear deformation theory (IFSDT). In contrast to the conventional Mindlin-Reissner theory, the present IFSDT incorporates an improved mathematical formulation and provides a more realistic parabolic depiction of shear strain throughout the plate's thickness without using any shear correction factors. In the present study, five types of porosity distribution functions are considered for the analysis. The material characteristics of the FGM porous plate change gradually in the thickness direction based on a power-law function. The governing equations are derived here using Hamilton's principle, and a finite element method is employed for numerical analysis. Comparative analyses with previously published literature underscore the precision and simplicity of our developed finite element model. Moreover, the effects of various types of loads, porosity parameters, power-law index, side-to-thickness ratio, aspect ratio, porosity distributions and boundary conditions on the deflections, natural frequencies, and critical buckling loads are thoroughly analyzed in detail. Finally, the findings of this research contribute to the understanding of the mechanical behavior of FGMs and pave the way for designing and optimizing novel porous functionally graded structures.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On the bending, buckling and free vibration analysis of bio-inspired helicoidal laminated composite shear and normal deformable beams
    (Elsevier ltd, 2025) Karamanlı, Armağan; Vo, Thuc P.; Belarbi, Mohamed-Ouejdi; Lee, Seunghye
    The mechanical behaviours of bio-inspired helicoidal symmetric laminated composite (BIHLC) beams are investigated via the Ritz method. By exploiting the variational formulation, equations of motion along with element stiffness, geometrical stiffness, and mass matrices are derived. The study conducts a thorough examination, covering bending, buckling stability, and free vibration analyses of BIHLC beams with various lamination schemes. The developed model is verified against existing literature on conventional composite laminated and BIHLC beams. The study also examines the mechanical response of BIHLCs, considering boundary conditions, lamination schemes, orthotropy ratios, and aspect ratios. Notably, deflections, critical buckling loads, and fundamental frequencies demonstrate variations dependent on the specific lamination scheme, boundary condition, and aspect ratio. Novel findings, presented for the first time, offer valuable insights for future studies in this area.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim