Yazar "Azadani, Reyhaneh Nasr" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Carboxymethyl cellulose/sodium alginate hydrogel with anti-inflammatory capabilities for accelerated wound healing; In vitro and in vivo study(Elsevier, 2024) Hosseini, Seyed Mohammad Reza; Heydari, Parisa; Namnabat, Mahtab; Azadani, Reyhaneh Nasr; Gharibdousti, Fateme Azimi; Rizi, Elmira Mousavi; Khosravi, Arezoo; Zarepour, Atefeh; Zarrabi, AliRecently, managing the chronic skin wounds has become increasingly challenging for healthcare professionals due to the intricate orchestration of cellular and molecular processes involved that lead to the uncontrollable inflammatory reactions which hinder the healing process. Therefore, different types of wound dressings with immunomodulatory properties have been developed in recent years to effectively regulate the immune responses, enhance angiogenesis, promote re-epithelialization, and accelerate the wound healing process. This study aims to develop a new type of immunomodulatory wound dressing utilizing carboxymethyl cellulose (CMC)/sodium alginate (Alg)-simvastatin (SIM) to simultaneously enhance the inflammatory responses and the wound healing ratio. The CMC/Alg-SIM hydrogels exhibited appropriate swelling ratio, water vapor transmission rate, and desirable degradation rate, depending on the SIM content. The fabricated dressing showed sustained release of SIM (during 5 days) that improved the proliferation of skin cells. According to the in vitro findings, the CMC/Alg-SIM hydrogel exhibited controlled pro-inflammatory responses (decreased 2.5- and 1.6-times IL-6 and TNF-alpha, respectively) and improved secretion of anti-inflammatory cytokines (increased 1.5- and 1.3-times IL-10 and TGF-beta, respectively) in comparison with CMC/Alg. Furthermore, the CMC/Alg-SIM hydrogel facilitated rapid wound healing in the rat model with a full-thickness skin defect. After 14 days post-surgery, the wound healing ratio in the CMC/Alg hydrogel group (-93%) was significantly greater than the control group (-58%). Therefore, the engineered CMC/Alg-SIM hydrogel with desired immunomodulatory properties possesses the potential to enhance and accelerate skin regeneration for the management of chronic wound healing.Öğe Exploring the evolution of tissue engineering strategies over the past decade: From cell-based strategies to gene-activated matrix(Elsevier, 2023) Esmaeili, Yasaman; Bidram, Elham; Bigham, Ashkan; Atari, Mehdi; Azadani, Reyhaneh Nasr; Tavakoli, Mohamadreza; Salehi, SaeidehThe advancement of tissue engineering for regenerating injured tissues and organs has progressed significantly in recent years. Various techniques have been used to modify the cells' microenvironments in the targeted tissue via their extracellular environment for achieving these aims. The 3D structured scaffolds alone or combined with bioactive molecules or genes and cells hold great promise for the development of functional engineered tissues. As an emerging and state-of-the-art technology in this field, integrating tissue engineering and gene therapy, known as gene-activated matrix (GAM), has gained immense attention as a promising approach for restoring damaged or dysfunctional tissues' function and structure. Nonetheless, fabricating GAMs with low cytotoxicity, high transfection efficiency, and long-term gene delivery efficiency is still challenging. Here we provide a complete overview of different tissue engineering approaches and their ongoing preclinical research trials. Moreover, the GAM strategy with a focus on gene-activated matrix development, faithful application, and future prospects as a tissue repair and regeneration replacement is assayed. The challenges and future research prospects in regenerative medicine are also presented. Eventually, we propose that GAMs offer a basic mechanistic infrastructure for tissue engineering to pave the way for clinical translation and achieve personalized regenerative medicine.Öğe Exploring the evolution of tissue engineering strategies over the past decade: From cell-based strategies to gene-activated matrix (vol 81, pg 137, 2023)(Elsevier, 2023) Esmaeili, Yasaman; Bidram, Elham; Bigham, Ashkan; Atari, Mehdi; Azadani, Reyhaneh Nasr; Tavakoli, Mohamadreza; Salehi, Saeideh[Abstract Not Available]Öğe Sustained release investigation of curcumin and ciprofloxacin on coaxial electrospun nanocomposite scaffold of poly (3-hydroxybutyrate)-poly glycerol sebacate: an approach for skin regeneration(Springer nature, 2025) Hosseini, Seyed Mohammad Reza; Heydari, Parisa; Azadani, Reyhaneh Nasr; Iravani, Siavash; Zarrabi, AliThe utilization of biomaterial scaffolds may promote the regeneration of cutaneous wounds. The investigation focused on fabricating an innovative type of scaffold for skin tissue regeneration through the coaxial electrospinning technique. The scaffold consisted of two segments: the core layer accommodated a combination of polyglycerol sebacate (PGS) and curcumin (Cur), while the shell layer contained poly(3-hydroxybutyrate) (PHB) and ciprofloxacin (CIP). An evaluation was conducted on the physical and mechanical properties, drug release characteristics, and cellular responses of the scaffolds. The assessment revealed that the fiber diameters and porosity of PGS/PHB and PGS/PHB-Cur/CIP were measured at 400-480 nm and 83-86%, respectively. The transmission electron microscopy (TEM) findings exhibited distinct core and shell structures in the PGS/PHB-Cur/CIP specimens. The specific aspects of the PGS/PHB-Cur/CIP scaffold, such as its controlled degradation (below 50% over 21 days), sustained drug release behavior of Cur and CIP (over 5 days), and optimal strength attributes (stress strength similar to 0.104 MPa), differentiate it from traditional wound coverings. Specifically, the incorporation of CIP and Cur into the fiber configuration enhanced the viability and adhesion of cells, resulting in an appropriate morphology. Therefore, the coaxial PGS/PHB-Cur/CIP demonstrates a heightened potential for wound dressing application or as a skin substitute.