Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ardestani, Mohammad Taha Salmanifard" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Amine-functionalized mesoporous silica nanoparticles decorated by silver nanoparticles for delivery of doxorubicin in breast and cervical cancer cells
    (Elsevier, 2024) Ghobadi, Melika; Salehi, Saeideh; Ardestani, Mohammad Taha Salmanifard; Mousavi-Khattat, Mohammad; Shakeran, Zahra; Khosravi, Arezoo; Cordani, Marco; Zarrabi, Ali
    Nanocarriers have demonstrated promising potential in the delivery of various anticancer drugs and in improving the efficiency of the treatment. In this study, silver nanoparticles (AgNPs) were green-synthesized using the extracts of different parts of the pomegranate plant, including the peel, flower petals, and calyx. To obtain the most efficient extract used for the green synthesis of AgNPs, all three types of synthesized nanoparticles were characterized. Then, (3-Aminopropyl) triethoxysilane-functionalized mesoporous silica nanoparticles (MSNs-APTES) decorated with AgNPs were fabricated via a one-pot green-synthesis method. AgNPs were directly coated on the surface of MSNs-APTES by adding pomegranate extract enriched with a source of reducing agent leading to converting the silver ion to AgNPs. The MSN-APTES-AgNPs (MSNs-AgNPs) have been thoroughly characterized using nanoparticle characterization techniques. In addition, DNA cleavage and hemolysis activities of the synthesized nanoparticles were analyzed, confirming the biocompatibility of synthesized nanoparticles. The Doxorubicin (DOX, as a breast/cervical anti-cancer drug) loading (42.8%) and release profiles were investigated via UV-visible spectroscopy. The fibroblast, breast cancer, and cervical cancer cells' viability against DOX-loaded nanoparticles were also studied. The results of this high drug loading, uniform shape, and small functionalized nanoparticles demonstrated its great potential for breast and cervical cancer management.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Antimicrobial activity of blow spun PLA/gelatin nanofibers containing green synthesized silver nanoparticles against wound ınfection-causing bacteria
    (MDPI, 2022) Sardareh, Elham Alinezhad; Shahzeidi, Moloud; Ardestani, Mohammad Taha Salmanifard; Mousavi-Khattat, Mohammad; Zarepour, Atefeh; Zarrabi, Ali
    One of the main challenges in wound healing is the wound infection due to various causes, of which moisture is the most important reason. Owing to this fact, wound dressings that can collect wound moisture in addition to showing antibacterial properties have provided an important basis for wound healing research. In this study, gelatin and poly lactic acid (PLA) polymers were used in a wound dressing textile to provide gelation and structure strength properties, respectively. Meanwhile, silver nanoparticles (SNPs) synthesized through the green method were integrated into these fibers to provide the formed textile with antibacterial properties. Nanoparticles were made using donkey dung extract, and nanofibers were produced by the solution blow spinning method which has high production efficiency and low energy consumption among spinning methods. The produced nanoparticles were characterized and evaluated by UV-Vis, DLS, XRD, and FTIR methods, and the production of silver nanoparticles that were coated with metabolites in the extract was proven. In addition, the morphology and diameter of the resulted fibers and presence of nanoparticles were confirmed by the SEM method. The size and size distribution of the synthesized fibers were determined through analyzing SEM results. Gelatin nanofibers demonstrated a mean size of 743 nm before and 773 nm after nanoparticle coating. PLA nanofibers demonstrated a mean size of 57 nm before and 182 nm after nanoparticle coating. Finally, 335 nm was the mean diameter size of gelatin/PLA/SNPs nanofibers. Also, the textiles synthesized by PLA and gelatin which contained silver nanoparticles showed higher antibacterial activity against both gram-positive and gram-negative species compared to PLA and gelatin tissues without nanoparticles. Cytotoxicity test on L929 cells showed that silver nanoparticles incorporated textiles of PLA and gelatin show a very low level and non-significant toxicity compared to the free particles.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim