Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Alfian, Ganjar" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Brain Pathology Classification of MR Images Using Machine Learning Techniques
    (Mdpi, 2023) Ramaha, Nehad T. A.; Mahmood, Ruaa M.; Hameed, Alaa Ali; Fitriyani, Norma Latif; Alfian, Ganjar; Syafrudin, Muhammad
    A brain tumor is essentially a collection of aberrant tissues, so it is crucial to classify tumors of the brain using MRI before beginning therapy. Tumor segmentation and classification from brain MRI scans using machine learning techniques are widely recognized as challenging and important tasks. The potential applications of machine learning in diagnostics, preoperative planning, and postoperative evaluations are substantial. Accurate determination of the tumor's location on a brain MRI is of paramount importance. The advancement of precise machine learning classifiers and other technologies will enable doctors to detect malignancies without requiring invasive procedures on patients. Pre-processing, skull stripping, and tumor segmentation are the steps involved in detecting a brain tumor and measurement (size and form). After a certain period, CNN models get overfitted because of the large number of training images used to train them. That is why this study uses deep CNN to transfer learning. CNN-based Relu architecture and SVM with fused retrieved features via HOG and LPB are used to classify brain MRI tumors (glioma or meningioma). The method's efficacy is measured in terms of precision, recall, F-measure, and accuracy. This study showed that the accuracy of the SVM with combined LBP with HOG is 97%, and the deep CNN is 98%.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim