Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Albayrak, M. Gokhan" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A comprehensive microstructural and transmission analysis on oxide dispersion-strengthened (ODS) alloys: Impact of erbium oxide (Er2O3) concentration on physical, structural, gamma-ray, and neutron attenuation properties
    (Elsevier Sci Ltd, 2024) Gunoglu, Kadir; Guler, Seval Hale; Guler, Omer; Almisned, Ghada; Ozkavak, Hatice Varol; Albayrak, M. Gokhan; Akkurt, Iskender
    This study explores the impact of integrating varying concentrations of Erbium Oxide (Er2O3) into Oxide Dispersion Strengthened (ODS) alloys, specifically focusing on gamma-ray and neutron attenuation properties. Utilizing a 316L stainless steel matrix, Er2O3 was methodically incorporated in concentrations ranging from 1 % to 21 % by weight. The structural and radiation attenuation properties of the resultant alloys were comprehensively analyzed using techniques such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and experimental gamma-ray transmission studies. The results demonstrate a significant enhancement in gamma-ray shielding with increased Er2O3 content. This enhancement is quantitatively evidenced by increased linear attenuation coefficient, elevated effective Electron Density (Neff), reduced Half-Value Layers (HVL), and higher effective atomic numbers (Zeff). These findings are crucial for nuclear applications where efficient gamma-ray shielding is paramount. Conversely, a decrease in the effective removal cross section (sigma R) for neutron attenuation was observed with higher Er2O3 concentrations. This suggests a potential compromise in neutron shielding efficiency, attributed to the dilution of neutron-absorbing base elements in the alloy. Additionally, the study reveals notable changes in the microstructural properties of the alloys, including alterations in particle size, distribution, and agglomeration, influenced by varying Er2O3 concentrations. In conclusion, this research provides valuable insights into the design of ODS alloys for nuclear radiation shielding, highlighting the balance between gamma-ray attenuation and neutron shielding properties. The study's findings contribute to the development of advanced materials for safer and more efficient nuclear technology applications.
  • Küçük Resim Yok
    Öğe
    Fabrication and structural, physical, and nuclear radiation shielding properties for Oxide Dispersion-Strengthened (ODS) alloys through Erbium (III) oxide, Samarium (III) oxide, and Praseodymium (III) oxide into 316L matrix
    (Elsevier Sci Ltd, 2024) Guler, Seval Hale; Guler, Omer; Kavaz, E.; Almisned, Ghada; Albayrak, M. Gokhan; Issa, Bashar; Tekin, H. O.
    We report a comprehensive investigation on customization process of Oxide Dispersion-Strengthened alloys through Sm2O3, Pr2O3, and Er2O3 incorporation into 316L stainless steel matrix in terms of a desired enhancement in structural, physical, and nuclear radiation shielding properties. Oxide powders are incorporated into 316L stainless steel powder all with the same purity of 99.5%. These were Erbium oxide (Er2O3), Praseodymium oxide (Pr2O3), and Samarium oxide (Sm2O3). First, X-Ray diffraction and Scanning Electron Microscope/Energy-dispersive X-ray spectroscopy analyses are conducted in order to investigate their physical and structural properties. Next, two different experimental setups are employed using a133Ba and 241Am/Be sources for the measurements of gamma-ray and neutron transmission properties of Oxide Dispersion -Strengthened alloys. The maximum density increment is achieved through Er2O3 compared to other rein-forced oxides. The detector counting value reached its minimum level when a 5% Er2O3 oxide dispersion was introduced into the 316L SS matrix. Similarly, the most significant degree of photon absorption, the highest values of mass attenuation coefficient, lowest half value layer, and most effective atomic number, were all attained by the same sample. Based on the findings derived from the investigation, it can be concluded that incorporating Er2O3 oxide into 316L steel can be considered as a viable option in terms of enhancing the critical properties of Oxide Dispersion-Strengthened alloys for extreme conditions such as nuclear reactors and other similar fields, where the behavioral attributes of the utilized materials are at utmost importance.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim