Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Alammer, Mohammed M." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Enhancing the power quality of dual rotor wind turbines using improved fuzzy space vector modulation and super twisting sliding techniques
    (Nature research, 2025) Benbouhenni, Habib; Bizon, Nicu; Yessef, Mourad; Elbarbary, Z. M. S.; Çolak, İlhami; Alammer, Mohammed M.; Bossoufi, Badre
    In the field of control, many approaches have been used to control generators, where indirect vector control (IVC) is considered one of the most prominent of these approaches due to its many advantages. This approach has a fast response time (RT) and is quite easy to realize. However, its reliance on traditional controllers makes this approach less efficient and less effective if the system parameters change. Consequently, this work proposes a new IVC approach for doubly-fed induction generators (DFIG) used in contra-rotating wind turbine (CRWT) systems. The designed IVC employs a super-twisting control to eliminate the instantaneous errors of the DFIG power using the direct calculation of the control voltage required by the rotor, which will lead to the improvement of the transient performance. In addition, a constant switching frequency is obtained using the multilevel fuzzy modified space vector modulation proposed for controlling the DFIG inverter, facilitating the design of harmonic AC filters. To evaluate the proposed solution, a digital simulation of the CRWT system was verified using MATLAB with the power of the used generator being 1.5 MW. For more accuracy, two tests were used to study the efficiency of the suggested control compared to the efficiency of the IVC in terms of getting better system features. The obtained results showed the efficacy of the designed control compared to the IVC and some of the different existing techniques in terms of enhancing system features. The suggested approach minimized torque fluctuations, active power, and current in the first test compared to the IVC approach by ratios estimated at 93%, 97%, and 98%, respectively. Also, the RT for reactive power, active power, and torque was reduced by 99.05%, 98.60%, and 98.60%, respectively, compared to the conventional IVC approach. In both tests, the designed approach minimized the harmonic distortion of the stream by ratios estimated at 18.02% and 16.22% compared to the conventional IVC approach. These obtained results were verified using empirical work, where hardware-in-the-loop simulation was used for this purpose. Accordingly, the empirical results demonstrated the validity, durability, and competence of the designed approach compared to the base IVC approach. Both the simulative and empirical results validate that the designed approach is of great importance in the field of control and renewable powers, as it can be relied upon to enhance the features of the systems. Therefore, the designed control has a promising future.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Genetic algorithm type 2 fuzzy logic controller of microgrid system with a fractional-order technique
    (Nature research, 2025) Maroua, Bouziane; Laid, Zarour; Benbouhenni, Habib; Elbarbary Z.M.S.; Çolak, İlhami; Alammer, Mohammed M.
    This paper presents a hybrid approach that combines a genetic algorithm (GA)-optimized type-2 fuzzy logic controller (T2FLC) with a fractional-order technique for enhanced control of a microgrid system. The T2FLC approach is employed to handle the inherent uncertainties in the microgrid due to fluctuating renewable energy inputs and varying loads. The GA optimizes the parameters of the designed FO-T2FLC approach, ensuring optimal performance under different operational conditions. This developed strategy is a modification and development of the traditional approach, as it is characterized by rapid dynamic response, high durability, distinctive performance, ease of application, and inexpensive. Also, this designed strategy does not depend on the mathematical model of the studied system, which gives satisfactory results if the system parameters change. The microgrid system on the direct current side features a photovoltaic array with battery storage. In contrast, the alternating current section comprises a multi-functional voltage source inverter integrated with a shunt active power filter. This setup delivers energy to the connected loads and the network. To manage the system effectively; traditional power control methods (direct power control and space vector modulation) are used for the alternating current section. Additionally, the proposed regulator control the direct current bus voltage loop, regulate the reactive and active power loops of the network, and compensate for the total harmonic distortion in the source streams. It also injects the required active power into the network to enhance the competence of the power network. In this work, the efficiency of the proposed FO-T2FLC-GA approach is verified using MATLAB, comparing it to the T2FLC-GA approach and some existing strategies such as third-order sliding mode control. The results obtained highlight the effectiveness and strength of the FO-T2FLC-GA approach in improving power quality and reducing the total harmonic distortion value, as it reduces the total harmonic distortion value of the current by percentages estimated at 80%, 33.87%, and 32.50% in all cases. The FO-T2FLC-GA approach also reduces the steady-state error, undershoot, fluctuations, and overshoot of direct current link voltage compared to the T2FLC-GA approach by percentages estimated at 1.54%, 33.04%, 25%, and 33.04%, respectively. Compared with other works, the proposed approach improves the response time, overshoot, and ripples of direct current link voltage by 59.38%, 50%, and 75%, respectively, compared to the third-order sliding mode control approach. These results could make the designed FO-T2FLC-GA approach a prominent solution in the future in other industrial applications such as propulsion and traction.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim