Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Alahmadi, Tahani Awad" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Comparative analysis to reduce greenhouse gas (GHG) emission in CI engine fuelled with sweet almond oil using ammonia/after treatment system
    (Elsevier, 2024) Sonthalia, Ankit; Varuvel, Edwin Geo; Subramanian, Thiyagarajan; Josephin, Femilda J. S.; Alahmadi, Tahani Awad; Pugazhendhi, Arivalaga
    The present study analyses the various techniques to reduce CO 2 emission, a major contributor to GHG emissions. Diesel was replaced with prunus amygdalus dulcis (sweet almond oil) -fuelled single -cylinder compression ignition (CI) engine. Due to the high viscosity of sweet almond oil, a transesterification procedure was used to convert it to biodiesel. In this experiment, the diesel fuel was entirely substituted with biodiesel (B100) in order to evaluate the emissions, combustion characteristics, and performance of the CI engine operating at a consistent 1500 revolutions per minute under varying loads. In comparison to diesel, tailpipe CO 2 emissions were greater when biodiesel was utilized due to its higher carbon content in the molecular structure. However, plantations absorbs CO 2 emissions from atmosphere causing 'net negative CO 2 emission '. No carbon fuel ammonia was introduced into the intake air using sweet almond oil biodiesel as the base fuel in order to reduce exhaust CO 2 emissions. Under various load conditions, ammonia was introduced at varying flow rates ranging from 10 to 30 LPM. It is observed that increase in ammonia flow rate led to reduction in CO 2 emission. CO 2 emission was reduced from 11.2 % for biodiesel to 6.9 % with 30 LPM ammonia. An after -treatment system was designed with calcite/ activated carbon and retrofitted in exhaust pipe and tested with B100 as fuel. The results indicate that calcite reduces CO 2 more effectively than CO 2 capture systems based on activated carbon. CO 2 emission with calcite is 9.6 % and with activated carbon it is 10.2 % at maximum load condition. The utilization of a calcite -based CO 2 capture system in conjunction with biofuel is believed to effectively mitigate the adverse effects of global warming by generating a net negative CO 2 effect and reducing engine out emissions. Based on the experimental results, compared to after treatment system, ammonia addition with biodiesel is more effective in reducing CO 2 emission without much affecting the other parameters.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim