Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Akpek, Ali" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Current strategies for the regeneration of skeletal muscle tissue
    (MDPI AG, 2021) Alarçın, Emıne; Bal Öztürk, Ayça; Avcı, Hüseyin; Ghorbanpoor, Hamed; Güzel, Fatma Doğan; Akpek, Ali; Yeşiltaş, Gözde; Canak İpek, Tuba; Avcı Adalı, Meltem
    Traumatic injuries, tumor resections, and degenerative diseases can damage skeletal muscle and lead to functional impairment and severe disability. Skeletal muscle regeneration is a complex process that depends on various cell types, signaling molecules, architectural cues, and physi-cochemical properties to be successful. To promote muscle repair and regeneration, various strategies for skeletal muscle tissue engineering have been developed in the last decades. However, there is still a high demand for the development of new methods and materials that promote skeletal muscle repair and functional regeneration to bring approaches closer to therapies in the clinic that structurally and functionally repair muscle. The combination of stem cells, biomaterials, and bio-molecules is used to induce skeletal muscle regeneration. In this review, we provide an overview of different cell types used to treat skeletal muscle injury, highlight current strategies in biomaterial-based approaches, the importance of topography for the successful creation of functional striated muscle fibers, and discuss novel methods for muscle regeneration and challenges for their future clinical implementation.
  • Küçük Resim Yok
    Öğe
    Eggshell integrated GelMA/CSMA/HyMA hybrid hydrogels for cell therapy/tissue engineering
    (Wiley, 2023) Yuce-Erarslan, Elif; Izbudak, Burcin; Kizilkurtlu, Ahmet Akif; Topal, Merve; Akpek, Ali; Bal-Ozturk, Ayca
    The use of biocompatible materials with improved behaviors for potential applications in the area of tissue engineering has increased as the developments in biomaterials have increased in recent years. Current approaches concentrate on hybrid combinations of synthetic and natural polymers. In this context, obtaining porous scaffolds with good mechanical properties is still challenging. Herein, a hybrid tissue scaffold consisting of methacrylated gelatin (GelMA), methacrylated chondroitin sulfate (CSMA), methacrylated hyaluronic acid (HyMA) and eggshell particles with enhanced pore morphology and mechanical property was fabricated by photo-polymerization. The effect of different amounts of eggshell particles on the behaviors of hybrid hydrogel scaffolds was investigated. It was determined by scanning electron microscope analysis (SEM) that the particles were well-dispersed and triggered the formation of an interconnected porous structure in the hybrid tissue scaffold containing 10% by weight of eggshell particles. It was concluded that the mechanical behaviors of the hybrid tissue scaffold containing 10% by weight of eggshell particles improved by 47% compared to the neat hydrogel scaffold. There were no toxic effects of eggshell particles-integrated scaffolds against osteoblast cells. In addition, cells successfully adhered onto the scaffolds and proliferated. Consequently, GelMA/CSMA/HyMA scaffolds containing 10% eggshell particles were found to be biocompatible and suitable for cell therapy and tissue engineering applications.
  • Küçük Resim Yok
    Öğe
    Molecular Separation by Using Active and Passive Microfluidic chip Designs: A Comprehensive Review
    (Wiley, 2024) Ebrahimi, Aliakbar; Icoz, Kutay; Didarian, Reza; Shih, Chih-Hsin; Tarim, E. Alperay; Nasseri, Behzad; Akpek, Ali
    Separation and identification of molecules and biomolecules such as nucleic acids, proteins, and polysaccharides from complex fluids are known to be important due to unmet needs in various applications. Generally, many different separation techniques, including chromatography, electrophoresis, and magnetophoresis, have been developed to identify the target molecules precisely. However, these techniques are expensive and time consuming. Lab-on-a-chip systems with low cost per device, quick analysis capabilities, and minimal sample consumption seem to be ideal candidates for separating particles, cells, blood samples, and molecules. From this perspective, different microfluidic-based techniques have been extensively developed in the past two decades to separate samples with different origins. In this review, lab-on-a-chip methods by passive, active, and hybrid approaches for the separation of biomolecules developed in the past decade are comprehensively discussed. Due to the wide variety in the field, it will be impossible to cover every facet of the subject. Therefore, this review paper covers passive and active methods generally used for biomolecule separation. Then, an investigation of the combined sophisticated methods is highlighted. The spotlight also will be shined on the elegance of separation successes in recent years, and the remainder of the article explores how these permit the development of novel techniques. This review is about the microfludic-based methods that have been used in the past two decades for the separation of different biomolecules like protein, DNA, and RNA. In this regard, passive, active, and hybrid microfludic methods that are used for biomolecules separation are disscused and reviewed in this paper.image
  • Yükleniyor...
    Küçük Resim
    Öğe
    Tissue adhesives: From research to clinical translation
    (Elsevier B.V., 2021) Bal Öztürk, Ayça; Cecen, Berivan; Avcı Adalı, Meltem; Topkaya, Seda Nur; Alarçin, Emine; Yaşayan, Gökçen; Li, Yi Chen Ethan; Bulkurcuoğlu, Bünyamin; Akpek, Ali; Avcı, Hüseyin; Shi, Kun; Shin, Suryon; Hassan, Shabir
    Sutures, staples, clips, and skin closure strips are used as the gold standard to close wounds after an injury. In spite of being the present standard of care, the utilization of these conventional methods is precarious amid complicated and sensitive surgeries such as vascular anastomosis, ocular surgeries, nerve repair, or due to the high-risk components included. Tissue adhesives function as an interface to connect the surfaces of wound edges and prevent them from separation. They are fluid or semi-fluid mixtures that can be easily used to seal any wound of any morphology-uniform or irregular. As such, they provide alternatives to new and novel platforms for wound closure methods. In this review, we offer a background on the improvement of distinctive tissue adhesives focusing on the chemistry of some of these products that have been a commercial success from the clinical application perspective. This review is aimed to provide a guide toward the innovation of tissue bioadhesive materials and their associated biomedical applications.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim