Yazar "Abdullah, Azizol" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Application of BukaGini algorithm for enhanced feature İnteraction analysis in intrusion detection systems(Taylor & Francis, 2024) Bouke, Mohamed Aly; Abdullah, Azizol; Cengiz, Korhan; Akleylek, SedatThis article presents an evaluation of BukaGini, a stability-aware Gini index feature selection algorithm designed to enhance model performance in machine learning applications. Specifically, the study focuses on assessing BukaGini's effectiveness within the domain of intrusion detection systems (IDS). Recognizing the need for improved feature interaction analysis methodologies in IDS, this research aims to investigate the performance of BukaGini in this context. BukaGini's performance is evaluated across four diverse datasets commonly used in IDS research: NSLKDD (22,544 samples), WUSTL EHMS (16,318 samples), WSN-DS (374,661 samples), and UNSWNB15 (175,341 samples), amounting to a total of 588,864 data samples. The evaluation encompasses key metrics such as stability score, accuracy, F1-score, recall, precision, and ROC AUC. Results indicate significant advancements in IDS performance, with BukaGini achieving remarkable accuracy rates of up to 99% and stability scores consistently surpassing 99% across all datasets. Additionally, BukaGini demonstrates an average reduction in dimensionality of 25%, selecting 10 features for each dataset using the Gini index. Through rigorous comparative analysis with existing methodologies, BukaGini emerges as a promising solution for feature interaction analysis within cybersecurity applications, particularly in the context of IDS. These findings highlight the potential of BukaGini to contribute to robust model performance and propel intrusion detection capabilities to new heights in real-world scenarios.Öğe BukaGini: A Stability-Aware Gini Index Feature Selection Algorithm for Robust Model Performance(Ieee-Inst Electrical Electronics Engineers Inc, 2023) Bouke, Mohamed Aly; Abdullah, Azizol; Frnda, Jaroslav; Cengiz, Korhan; Salah, BashirFeature interaction is a vital aspect of Machine Learning (ML) algorithms, and gaining a deep understanding of these interactions can significantly enhance model performance. This paper introduces the BukaGini algorithm, an innovative and robust approach for feature interaction analysis that capitalizes on the Gini impurity index. By exploiting the unique properties of the BukaGini index, our proposed algorithm effectively captures both linear and nonlinear feature interactions, providing a richer and more comprehensive representation of the underlying data. We thoroughly evaluate the BukaGini algorithm against traditional Gini index-based methods on various real-world datasets. These datasets include the High School Students' Performance (HSSP) dataset, which examines factors affecting student performance; Cancer Data, which focuses on identifying cancer types based on gene expression; Spambase, which targets spam email classification; and the UNSW-NB15 dataset, which addresses network intrusion detection. Our experimental results demonstrate that the BukaGini algorithm consistently outperforms traditional Gini index-based methods in terms of accuracy. Across the tested datasets, the BukaGini algorithm achieves improvements ranging from 0.32% to 2.50%, underscoring its effectiveness in handling diverse data types and problem domains. This performance gain highlights the potential of the BukaGini algorithm as a valuable tool for feature interaction analysis in various ML applications.