Yazar "İlik, Erkan" seçeneğine göre listele
Listeleniyor 1 - 12 / 12
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A critical assessment of the mechanical strength and radiation shielding efficiency of advanced Concrete composites and Vanadium Oxide-Glass container for enhanced nuclear waste management(Elsevier B.V., 2024) Tekin, Hüseyin Ozan; ALMisned, Ghada; Kılıç, Gökhan; İlik, Erkan; Susoy, Gülfem; Elshami, Wiam E.; Issa, BasharThe nuclear industry produces large quantities of low, intermediate, and high levels of radioactive waste, all of which require safe management during both transport and storage. This study evaluates the radiation shielding effectiveness and mechanical properties of four distinct container materials: Pb Composite Glass, 0.5 Cement-0.5 Bitumen, Concrete (Steel-Magnetite), and C9 (BCBV0.5) Vanadium Oxide-Glass. Using Monte Carlo simulations and theoretical methods, we determined the Transmission Factors (TF) and Half-Value Layers (HVL) for each material. The TF indicates the effectiveness of a material in attenuating radiation, calculated by the ratio of gamma rays exiting the material to those entering it. Lower TF values signify better radiation shielding. The HVL is the thickness of material required to reduce the intensity of gamma rays by half, with lower HVL values indicating more effective shielding. Concrete (Steel-Magnetite) demonstrated superior performance with the lowest TF values (e.g., 1.0 × 10-1 at 0.662 MeV and 1 cm thickness) and HVL values (e.g., 2.5 cm at 1.3325 MeV), alongside a high elastic modulus of 163.15 GPa, indicating its robustness for high-energy gamma-ray applications. Pb Composite Glass also showed strong performance with a TF of 9.5 × 10-2 at 0.662 MeV and 1 cm thickness, an HVL of 2.0 cm at 0.662 MeV, and an elastic modulus of 41.54 GPa. The C9 (BCBV0.5) Vanadium Oxide-Glass, with an elastic modulus of 73.79 GPa, outperformed the 0.5 Cement-0.5 Bitumen mixture in both TF (e.g., 1.15 × 10-1 at 0.662 MeV and 1 cm thickness) and HVL (e.g., 4.2 cm at 1.1732 MeV) measurements, highlighting its potential as a more effective alternative. It can be concluded that C9 (BCBV0.5) Vanadium Oxide-Glass presents promising properties for future advancements in radiation protection, warranting further research and optimization. © 2024 The Author(s)Öğe A critical evaluation on nuclear safety properties of novel cadmium oxide-rich glass containers for transportation and waste management: Benchmarking with a reinforced concrete container(Frontiers Media SA, 2022) ALMisned, Ghada; Baykal, Duygu Şen; Kılıç, Gökhan; İlik, Erkan; Zakaly, Hesham M.H.; Ene, Antoaneta; Tekin, Hüseyin OzanWe examine the nuclear safety properties of a newly designed cadmium oxide-rich glass container for nuclear material to a bitumen-reinforced concrete container. Individual transmission factors, detector modelling, and energy deposition (MeV/g) in the air are calculated using MCNPX (version 2.7.0) general purpose Monte Carlo code. Two container configurations are designed with the material properties of cadmium dioxide-rich glass and Concrete + Bitument in consideration. First, individual transmission factors for 60Co and 137Cs radioisotopes are calculated. To evaluate potential environmental consequences, energy deposition amounts in the air for 60Co and 137Cs are also determined. The minimum gamma-ray transmission rates for two container types are reported for a cadmium dioxide-rich glass container. In addition, the quantity of energy deposition is varied depending on the container type, with a lower value for cadmium dioxide-rich glass container. The 40% cadmium dioxide-doped glass container provides more effective safety than the Cement + Bitumen container, according to the overall findings. In conclusion, the utilization of cadmium dioxide-doped glass material along with its high transparency and advanced material properties may be a significant and effective option in areas where concrete is required to assure the safety of nuclear materials. Copyright © 2022 ALMisned, Baykal, Kilic, Ilik, Zakaly, Ene and Tekin.Öğe A first-time fusion of TiNbWMoZrOx high entropy oxide (HEO) with zinc-tellurite glass: Toward superior physical properties(Elsevier B.V., 2024) Kılıç, Gökhan; Güler, Ömer; Kavaz, Esra; İlik, Erkan; Güler, Seval Hale; ALMisned, Ghada; Tekin, Hüseyin OzanWhile numerous oxide additives have traditionally been employed to enhance the radiation shielding capabilities of glasses, the unique attributes of high-entropy oxides (HEOs), a group of materials acclaimed in contemporary material science for their distinctive properties have remained unexamined in this specific area. This novel study explores the enhancement of radiation shielding properties in zinc-tellurite glasses through the integration of TiNbWMoZrOx High Entropy Oxides (HEO). Utilizing advanced synthesis techniques, including mechanical alloying and oxidation, the research successfully incorporates HEOs into glass matrices, aiming to improve gamma-ray and neutron attenuation. Characterization through X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) confirms the uniform distribution and structural integrity of the HEOs within the glasses. The synthesis of glass samples with a base structure suitable for the molar composition of 25ZnO.75TeO2 (mol%) and glass samples doped with TiNbWMoZrOx (HEO) was carried out using the traditional high-temperature melting and annealing method. The outcomes demonstrate a concentration-dependent increase in shielding efficacy, particularly highlighting the superior performance of glasses doped with 4 mol% of TiNbWMoZrOx (HEC2–4), which exhibit significantly enhanced mass attenuation coefficients, lower half-value layers, and higher effective atomic numbers. This indicates the effective role of HEOs in boosting radiation protection capabilities. Comparative analysis with traditional shielding materials showcases the HEC2–4 glasses' competitive advantage, underlining their potential as a versatile shielding solution. It can be concluded that incorporating TiNbWMoZrOx high entropy oxides into zinc-tellurite glasses significantly augments their radiation shielding properties, offering a novel approach for enhancing protection against gamma-ray and neutron in various applications. © 2024 Elsevier B.V.Öğe CdO-rich quaternary tellurite glasses for nuclear safety purposes: Synthesis and experimental gamma-ray and neutron radiation assessment of high-density and transparent samples(Elsevier, 2022) Kılıç, Gökhan; Kavaz, Esra; İlik, Erkan; Almisned, Ghada; Tekin, Hüseyin OzanWe present the preparation phase and comprehensive analysis of nuclear radiation shielding characteristics of novel melt-quenched 20P2O5·30TeO2.(50-x)ZnO.xCdO (x = 0, 15, 20, 30, and 40 mol percent) quaternary-tellurite glasses. The primary objective is to compare the changes in nuclear radiation absorption qualities that come from maintaining high transparency and increasing the CdO contribution rate to maximum values, such as 40 mol%. Consequently, experimental gamma-ray and neutron transmission systems are used to investigate the monotonic impacts of increasing CdO reinforcement on the functioning of synthesized glasses utilizing the well-known melt-quenching method. For the determination of attenuation coefficients, a standard gamma-ray setup is used with an Ultra germanium detector and 133Ba radioisotope. In addition, using the Canberra NP-100B BF3 gas proportional detector, glass shields are bombarded with a 241Am/Be neutron source (10 mCi/4.5 MeV) using a gas proportional detector. The addition of 40% mole CdO to the basic composition of glass significantly improved the transition resistance to gamma and neutron radiation. Furthermore, it was shown that the degree of transparency in the C40 sample synthesized with a 40% CdO additive ratio was equivalent to that of an ideal transparent glass sample. Moreover, C40 sample had better gamma-ray attenuation properties than all other shielding materials (except for RS-520). According to the findings, C glasses have a greater capacity for neutron attenuation than investigated conventional moderators. It can be concluded that C glass family is an effective gamma-shield and neutron moderator for research and medical radiation applications. © 2022 Elsevier B.V.Öğe A critical evaluation on nuclear safety properties of novel cadmium oxide-rich glass containers for transportation and waste management: benchmarking with a reinforced concrete container(FRONTIERS MEDIA SA, 2022) Almisned, Ghada; Şen Baykal, Duygu; Kılıç, Gökhan; İlik, Erkan; Zakaly, Hesham M. H.; Ene, Antoaneta; Tekin, Hüseyin OzanWe examine the nuclear safety properties of a newly designed cadmiumoxide-rich glass container for nuclear material to a bitumen-reinforced concrete container. Individual transmission factors, detectormodelling, and energy deposition (MeV/g) in the air are calculated using MCNPX (version 2.7.0) general purpose Monte Carlo code. Two container configurations are designed with the material properties of cadmium dioxide-rich glass and Concrete + Bitument in consideration. First, individual transmission factors for 60Co and 137Cs radioisotopes are calculated. To evaluate potential environmental consequences, energy deposition amounts in the air for 60Co and 137Cs are also determined. The minimum gamma-ray transmission rates for two container types are reported for a cadmium dioxiderich glass container. In addition, the quantity of energy deposition is varied depending on the container type, with a lower value for cadmium dioxide-rich glass container. The 40% cadmium dioxide-doped glass container provides more effective safety than the Cement + Bitumen container, according to the overall findings. In conclusion, the utilization of cadmium dioxide-doped glass material along with its high transparency and advanced material properties may be a significant and effective option in areas where concrete is required to assure the safety of nuclear materials.Öğe Elucidating the influences of tantalum (V) oxide in Bi2O3–TeO2–ZnO ternary glasses: an experimental characterization study on optical and nuclear radiation transmission properties of high-density glasses(Elsevier, 2022) İlik, Buse Özen; Kılıç, Gökhan; İlik, Erkan; Kavaz, Esra; Almisned, Ghada; Tekin, Hüseyin OzanWe report the optical and experimental gamma-ray and neutron attenuation properties of tantalum pentoxide reinforced Bi2O3–TeO2–ZnO ternary glasses with a nominal composition of 10Bi2O3–70TeO2-(20-x)ZnO-xTa2O5 (where x = 0,2,4, and 6 mol%). Measurements of transmittance and absorbance spectra for all of the synthesized samples are performed with Analytik Jena Specord 210 plus device between the range of 190–1100 nm. Moreover, 133Ba and 241Am/Be sources are utilized for experimental gamma-ray and neutron attenuation studies of BTZT glasses. According to results, the absorption edge is consistently moved from 380 nm to 390 nm as a result of ZnO/Ta2O5 translocation. In addition to decrease in optical band gap values of glass series, the fact that doping the structure containing Ta2O5 is lead to an increase in Urbach energies. The obtained irregularity through an increasing Ta2O5 additive is also changed the overall nuclear radiation attenuation properties of the BTZT glasses. The gamma-ray attenuation properties are obviously enhanced within the energy range of 133Ba radioisotope. The attenuation properties against fast neutron emitted from 241Am/Be were significantly enhanced through increasing Ta2O5 contribution. It can be concluded that BTZT6 glass sample may be regarded as a beneficial glass composition for multifunctional applications. It can be also concluded that ZnO/Ta2O5 translocation in Bi2O3–TeO2–ZnO ternary glasses may be regarded as a monotonic tool where the neutron attenuation properties should be strengthened in addition to gamma attenuation properties.Öğe Exploring the gamma-ray shielding performance of boron-rich high entropy alloys(Elsevier Ltd., 2025) Alan, Hatice Yılmaz; Güler, Ömer; Yılmaz, Ayberk; Susam, Lidya Amon; Kavaz, Esra; Kılıç, Gökhan; İlik, Erkan; Oktik, Şener; Akkuş, Baki; ALMisned, Ghada; Tekin, Hüseyin OzanHigh entropy alloys (HEAs) are innovative materials combining multiple principal elements, known for their exceptional properties and wide-ranging applications. This study assesses the gamma-ray shielding capacity of twelve boron-based HEAs through advanced computational methods. Key parameters in terms of understanding the material's ability to reduce radiation intensity, specifically half-value layer (HVL) and tenth-value layer (TVL); its capacity to absorb or scatter photons, including mass attenuation coefficient (MAC) and linear attenuation coefficient (LAC); and other related factors such as equivalent atomic number (Zeq), effective atomic number (Zeff), effective electron density (Neff), mean free path (MFP), and fast neutron removal cross-section (FNRCS) were calculated for photon energies between 0.015 and 15 MeV using the computational method Phy-X/PSD (Photon Shielding and Dosimetry). Additionally, the interaction of alpha particles and protons with these alloys was assessed by calculating energy deposition KERMA (Kinetic Energy Released per Unit Mass) and mass stopping power (MSP) using PAGEX (interaction of protons, alpha, gamma rays, electrons, and X-rays with matter) software, while SRIM (Stopping and Range of Ions in Matter) was employed to estimate particle penetration depths. Electron interactions were evaluated using ESTAR (Stopping Power and Range Tables for Electrons) for stopping power and penetration depth. Among the alloys, Sample 10, S10, (Zr10.8%-Hf21.3%-Nb11.0%-Ta21.6%-W22.0%-B13.1%) exhibited efficient shielding properties due to its high density and interaction characteristics. It can be concluded that boron-based HEAs with optimized compositions and high densities demonstrate significant potential for advanced radiation protection applications. © 2025 Elsevier LtdÖğe First-ever fusion of high entropy alloy (HEA) with glass: Enhancing of critical properties of zinc-tellurite glass through TiZrNbHfTaOx incorporation(Elsevier Ltd, 2024) Güler, Ömer; Kılıç, Gökhan; Kavaz, E; İlik, Erkan; Güler, Seval Hale; ALMisned, Ghada; Tekin, Hüseyin OzanMany oxide additives have historically been used to enhance the radiation shielding properties of glasses, yet the potential of high-entropy oxides (HEOs), which have gained popularity in material science for their unique properties, has not been explored in this context. This study is the first to investigate the radiation shielding capabilities of Zinc-Tellurite glass infused with High Entropy Oxide (HEO), specifically utilizing the novel attributes of a synthesized TiZrNbHfTa. In this study, the nuclear shielding properties of newly fabricated Zinc-Tellurite glasses doped with TiZrNbHfTaOx with a composition (25ZnO·75TeO2)100-x. (TiZrNbHfTaOx)x (x = 0, 1, 2, 3, 4 mol%) were studied. Through the synthesis of a TiZrNbHfTa HEA and its integration into glass structure, we have developed a series of novel materials with enhanced protective properties against both gamma-ray and neutron radiation. Experimental results demonstrate that the HEO-infused glass, particularly the HEC1-4 composition, significantly surpasses traditional shielding materials in neutron attenuation, evidenced by its superior effective neutron removal cross-section. Additionally, the HEC1-4 glass demonstrates improved gamma-ray shielding capabilities, with increased mass attenuation coefficients and decreased half-value layers, indicating a higher capacity for photon interaction and absorption. It can be concluded that the incorporation of High Entropy Alloys into glass matrices not only opens a new frontier in radiation shielding materials but also provides a versatile and effective solution with considerable potential for enhancing safety measures in radiation-prone environments. © 2024 Elsevier Ltd and Techna Group S.r.l.Öğe Synthesis and experimental characterization on fast neutron and gamma-ray attenuation properties of high-dense and transparent Cadmium oxide (CdO) glasses for shielding purposes(Elsevier Ltd, 2022) Kavaz, Esra; İlik, Erkan; Kılıç, Gökhan; Almisned, Ghada; Tekin, Hüseyin OzanWe present synthesis and thorough characterization phases of newly developed 20P2O5·30TeO2.(50-x)ZnO.xCdO (x = 0, 2, 4, 6, 8, 10 mol%) glasses. Experimental gamma-ray and neutron transmission systems are used in terms of exploring the monotonic effects of increasing CdO reinforcement on behavioural changes of synthesized glasses through well-known melt-quenching method. A conventional gamma-ray setup along with a high purity germanium detector as well as 133Ba radioisotope is used for determination of attenuation coefficients. Glass shields are irradiated with a241Am/Be neutron source using the Canberra NP-100B BF3 gas proportional detector. The addition of 10% mole CdO to the basic glass composition had a significant favorable impact on the transition resistance to gamma and neutron radiation. In comparison to all available shielding materials, (except RS-520), the C10 sample demonstrated superior gamma-ray attenuation capabilities. According to results, C glasses generally exhibit superior neutron attenuation capabilities than conventional moderators. It can be concluded that C glass family may be considered as suitable gamma-shield and neutron moderator in different types of applications from research to medical radiation fields. © 2022 Elsevier Ltd and Techna Group S.r.l.Öğe Tailoring critical material properties of some ternary glasses through ZnO/CdO alteration: a focusing study on multiple behavioral changes(Springer Science and Business Media Deutschland GmbH, 2022) Kılıç, Gökhan; İlik, Erkan; Issa, Shams A.M.; Almisned, Ghada; Tekin, Hüseyin OzanWe present the optical, physical, and alpha/proton absorption properties of C-type P2O5–TeO2–ZnO ternary glass structures with a nominal composition of 20P2O5.30TeO2. (50-x)ZnO.xCdO (x = 15, 20, 30, 40 mol%). Using experimental methods, the physical and optical features of manufactured glasses are measured. The densities of the produced samples are increased due to ZnO/CdO translocation. Sixteen different bands are obtained as a result of deconvolution process. The C20 sample is reported with the largest optical band gap (3.530 eV) while the C15 sample is reported with the lowest (3.450 eV). According to our results, keeping the CdO concentration of ternary glasses around 40% is crucial for maintaining the glassy structure since glassy structure is distorted when %50 CdO (i.e., C50 sample) is incorporated into the glass structure. The shortest distances that alpha and protons may travel at the same energy levels are found in the C40 sample, which has the largest CdO contribution and the highest glass density. Due to the C40 sample’s greatest resistance to the movement of heavy particles within the material, this is the case. Our results have shown that 40% CdO contribution improves absorption of alpha and protons within the absorber material. Due to their great transparency and promising material features, it can be concluded that ternary glasses containing CdO might serve as excellent glass shields.Öğe Tailoring optimal KERMA, projected range, and mass stopping power, and gamma-ray shielding capabilities through BaO/ZnO/CdO/SrO incorporation into Na2O–SiO2 glasses(Elsevier Ltd., 2025) Alan, Hatice Yılmaz; Yılmaz, Ayberk; Susam, Lidya Amon; Öztürk, Gizem; Kılıç, Gökhan; İlik, Erkan; Oktik, Şener; Akkuş, Baki; ALMisned, Ghada; Tekin, Hüseyin OzanThis study explores the radiation shielding potential of Na2O–SiO2 glass matrices doped with BaO, ZnO, CdO, and SrO, analysed across a broad energy spectrum. The research employed various computational tools such as Phy-X/PSD and PAGEX codes to calculate various shielding parameters, including Kinetic Energy Released in Material (KERMA), mass stopping power, fast neutron, and gamma-ray attenuation properties. Among the glass samples, S3, with its BaO content, exhibited the most advantageous properties in terms of radiation attenuation. The results showed that S3 has the lowest Half Value Layer (HVL) of 0.032 cm at 0.015 MeV and the highest KERMA value, peaking at 0.3 MeV with 0.18 MeV/g. The mass stopping power values for alpha particles in the S3 sample showed a pronounced peak at 0.7 MeV, reaching 150 MeV cm2/g, indicating superior energy absorption. The S3 sample, composed of 20% Na2O, 20% BaO, and 60% SiO2, demonstrated the highest density (i.e., 3.225 g/cm³) and effective atomic number (i.e., 17.5), which contributed to its superior shielding performance. The study's findings show that the careful manipulation of glass composition, particularly through the incorporation of high-atomic-number oxides, can significantly enhance shielding effectiveness. It can be concluded that the S3 glass sample would be an optimal configuration for practical applications in radiation protection, where the Na2O–SiO2 glass matrices doped with BaO in terms of optimal material properties. . © 2024 Elsevier LtdÖğe ZnO/CdO translocation in P2O5-TeO2-ZnO ternary glass systems: A reformative enhancement tool for physical, optical, and heavy-charged particles attenuation properties(Elsevier GmbH, 2022) Kılıç, Gökhan; İlik, Erkan; Issa, Shams A.M.; Almisned, Ghada; Tekin, Hüseyin OzanWe report the optical, physical, structural, and heavy charged particle absorption parameters of CdO doped P2O5-TeO2-ZnO ternary glass structures with a nominal composition of 20 P2O5.30TeO2.(50-x)ZnO.xCdO (x = 0, 2, 4, 6, 8, 10 mol. %). Physical as well as optical characteristics of the synthesized glasses are measured using experimental methods. ZnO/CdO translocation is caused an increase in the density of the synthesized samples. Synthesized glasses are reported along with seventeen different bands as a result of deconvolution processes. The structure is formed more tightly and regularly with ZnO/CdO translocation process. As a result of the evaluation of the absorption edge, transmittance of the glass without CdO additive is reported around 338 nm in the 20–30 % transmittance region, the absorption edge of all the glasses doped with CdO is shifted to around 336 nm. According to results, un-doped C0 glass is observed more unstable and far from homogeneous than doped glasses with the largest Urbach energy value (0.1506 eV), while C10 glass is observed as much more stable and uniform when compared to all glasses in this study with a value of 0.1311 eV. Moreover, projected range values of alpha and protons grew as the energy level increased. The shortest lengths that alpha and protons may travel at the same energy levels are reported for the C10 sample, which has the highest CdO contribution as well as the highest glass density. C10 glass sample is reported to have the maximum degree of clarity, making it one of the most important qualifying requirements for shields in medical radiation facilities, where the observation of both the patient and the physical radiation source is crucial. It can be concluded that the investigated ZnO/CdO translocation process may be seen as a beneficial tool for P2O5-TeO2-ZnO ternary glass structures in terms of enhancing optical, physical, and heavy charged particle attenuation properties.